題目:Coding Theory on Security Applications 主講人:韓永祥 教授 (台灣科技大學電機系 教授) 時間:104年11月25日(星期三13:30 - 15:00) 地點:公1F27 Abstract:Recently, coding theory has found many applications on information security. In this talk we will introduce how (n, k) Reed-Solomon codes apply on secrete sharing, key distribution systems, and networked distributed (big data) storage. We start from a generalization of Shamir’s famous (k, n) threshold scheme on secrete sharing, where any k or more users who pool their secret shares may easily recover the initial secret S but any group of users knowing only k − 1 or fewer shares may not. Then we pay attention to a forgotten key distribution scheme, Blom’s scheme, which has found to be useful in wireless sensor networks. During an initialization stage of key distribution, a base station generates and distributes secret data values to sensors and then any pair of sensors may compute a shared key unknown to all others aside from the base station. Blom’s scheme guarantees that any coalition of k − 1 or fewer sensors can do no better at computing the key shared by the two than a party which guesses the key without any secret data values. Each sensor only carries k secret data values in Blom’s scheme. Recently, organizations need to manage, process, and store huge amounts of data. Since these data are large and complex, they are very difficult to process, manage, and store by traditional database tools and data processing applications. Large data centers with storage nodes (disks) have been built to store “big data.” One critical requirement of a data center is to assure data integrity. Due to the use of commodity software and hardware, crashstop and Byzantine failures (or attacks) are likely to be more prevalent in today’s large-scale data centers or distributed storage systems. Regenerating codes have been shown to be a more efficient way to disperse information across multiple storage nodes and recover crash-stop failures in the literature. 1 Finally, we introduce a class of error-correcting regenerating codes based on Reed-Solomon codes . Error-correcting regenerating codes are not only capable of resisting crash-stop failures but also Byzantine attacks. 簡歷: 韓永祥博士 1984 年畢業於台灣國立清華大學電機工程學系並於 1986 年於同系取得碩士學位。1993 年韓博士於紐約州雪城大學獲得計算機與信息科學博士。他曾於華梵人文科技學院,國立暨南國際大學,以及國立台北大學任教。從 2010 年 8 月起,他任教於國立台灣科技大學電機工程系並於 2011 年 6 月起榮任學校講座教授。韓博士的研究興趣主要是在錯誤控制碼,無線網絡和資訊安全。韓博士已從事最先進的錯誤控制碼解碼研究超過 20 年。20 年前他首先開發了基於 A * 算法的連續型解碼演算法。當時,該演算法吸引了大量的關注,因為它是對二進制線性區塊碼最有效的最大似然軟性決定解碼演算法。此解碼演算法已被收錄於錯誤控制碼的經典教科書中。韓博士還成功地應用編碼理論於無線傳感器網絡的研究領域。他已出版幾個關於無線傳感器網絡研究的高被引用著作。其中一篇關於隨機密鑰預分配方案著作被引用超過一千七百次。他還擔任多個國際學術刊物的編輯。韓博士是 1994 年雪城大學博士論文獎得主,同時也是 IEEE 院士。2013 年他的一個論文贏得了久負盛名的 ACM CCS Test of Time 獎。此獎項為 ACM 資訊安全領域的年度最有影響力論文獎。此論文發表於 2003 年並已影響資訊安全領域達十年之久 |