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Abstract— In this paper, a semi-supervised transfer learning
with dynamic associate domain adaptation is proposed for human
activity recognition by using the channel state information (CSI)
of the WiFi signal. We propose a dynamic associate domain
adaptation (DADA), by modifying the existing associate domain
adaptation algorithm, while the target domain can dynamically
provide a different ratio of labelled data set/unlabelled data set.
The advantage of DADA is that it provides a dynamic strategy
to eliminate different effects under the different environments.
We designed an attention-based DenseNet model (AD) as our
training network, so our proposed scheme is simplified as DADA-
AD scheme. The experimental results illustrate that the accuracy
of human activity recognition of the DADA-AD scheme is 97.4%.
It also shows that DADA-AD has advantages over existing semi-
supervised learning schemes.

Index Terms— Human activity recognition, channel state infor-
mation, semi-supervised learning, domain adaptation, attention.

I. INTRODUCTION

Environmental sensors are widely deployed everywhere in
our daily environmental. With the environmental sensor data,
it records our daily activities through human activity recog-
nition (HAR). The research significance and practical value
of HAR has attracted recently, so a large number of research
results on HAR have be attention recently. The existing HAR
systems usually use cameras, wearable devices, and sensors
[1]. However, all of the aforementioned methods require a
large amount of hardware equipment with the limitation of
the power lifetime to limit its universality. Consequently, it
is very important and valuable to investigate the device-free
HAR system.

Therefore, WiFi-based HAR had made great progress, many
efforts are dedicated to develop practical applications. For
example, positioning had been carried out by using Received
Signal Strength Indication (RSSI) and Channel State Informa-
tion (CSI) [2], CSI illustrates the overall amplitude response,
thereby more finely depicting the state of the channel. But
there are still many challenges for using CSI. For instance,
due to the different superposition of multipath, the received
signal of the same activity and the influence on the wireless
channel are significantly different at different locations. The
contributions of this paper are as follows:

• We design a new semi-supervised transfer learning with
dynamic associate domain adaption (DADA) capability
for HAR. Our proposed DADA scheme can dynamically

adjust ratio of labeled data set and unlabeled data set of
the target domain, which is dynamically depended on the
target environment status.

• Our actual experimental results show that if the data is
unbalanced, the average accuracy of DADA is 4.17%
higher than that of ADA, but if there is no data unbalance
is only 1.08%.

• To increase the recognition accuracy, an attention-based
densenet model (AD) is designed as our new training
network. Our experimental results show that the accuracy
of AD as our training network is increased by 4.13%,
compared to existing HAR-MN-EF scheme [3].

The rest of the paper is organized as follows. Section II
describes the related work. Section III describes the problem
formulation. Section IV describes the proposed scheme. Sec-
tion V discusses the performance results. Finally, Section VI
concludes this paper.

II. RELATED WORK

When the environment changes, the background noise of the
environment will change the characteristics, resulting in poor
recognition efficiency. Shi et al. [3] proposed an environment-
robust channel state information (CSI) based HAR by lever-
aging the properties of a matching network (MatNet) and
enhanced features. MatNet allows to learn and extract inherent
and transferable functions, thereby transferring knowledge in
different environments. Unfortunately, although the knowledge
of CSI information after feature extraction can be transferred,
but the required accuracy cannot be met only by directly trans-
ferring the features. Ding et al. [4] proposed a semi-supervised
WiFi location-independent HAR, called WiLISensing. Han et
al. [5] proposed DANGR. The key idea is to adopt the domain
adaptation based on the multi-core maximum mean difference
scheme.

III. PROBLEM FORMULATION

In this work, Ds and Dt represent as the source do-
main and the target domain, H̃s and H̃t are further de-
noted as the CSI matrix from the source domain and the
target domain, respectively. We consider a source domain,
Ds = {H̃s

i , y
s
i }(i=1,. . . ,ns)

, where H̃s
i is the i-th collected

CSI matrix H̃s
i from the source environment, and ysi is

the corresponding label of H̃s
i . The target domain, Dt =

{H̃t
i , y

t
i}(i=1,. . . ,n) ∪ {H̃t

i }(i=n+1,. . . ,nt)
, ns and nt represent
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the total number of Ds and Dt data respectively, where H̃t
i is

the i-th collected CSI matrix H̃t from the target environment.
It is observed that, CSI matrix H̃t

i of the target environment
has target label yti , where 1 ≤ i ≤ n. But, there are no target
labels for all H̃t

i , where n + 1 ≤ i ≤ nt. That is, the target
labels {yti}(i=n+1,. . . nt)

are not available for training.
We formalized the objective function Lf as follows:

arg min∗ Lf

Lf = (1− λ)Lc + λ · Lsim

subject to 0 ≤ λ ≤ 1

(1)

where Lf is the combined objective function of both consid-
ering the Lc and Lsim, where Lc is the objective function
of classification, Lsim is the objective function of similarity
problem, Lf is the weigh-sum of Lc and Lsim, as the total
objective function, where λ is the hyper-parameter of the
hybrid objective function. The objective function Lsim is used
to measure the difference between two different distributions,
which is expressed as wasserstein distance.

Lsim =
√
min
Pst

EPst
∥ϕ(Ds)− ϕ(Dt)∥22. (2)

The distribution Ps represents the distribution of Ds, the
distribution Pt represents the distribution of Dt,and Pst is the
joint distribution of Pt and Pt, and Ps ̸= Pt, ϕ represents as a
mapping function, which maps data of different distributions
to the same space. Lsim represents is the joint distribution
Pst, find out the minimum expected value EPst by mapping
Ds and Dt in the same space through ϕ.

Lc is the objective function used for classification problems,
is given as follows.

Lc = max [
1

Ns

Ns∑
i=1

H(ysi , p
s
i ),

1

Nl

Nl∑
i=1

H(yli, p
l
i)], (3)

H(ysi , p
s
i ) = − 1

m

m∑
j=1

ysi,j · log(p
,
i,j), (4)

H(yli, p
l
i) = − 1

m

m∑
j=1

yli,j · log(p
l
i,j), (5)

subject to

{
ysi,j , y

l
i,j , ∀ i, j

0 ≤ psi,j , p
l
i,j ≤ 1 , ∀ i, j

where Q(ysi , p
s
i ) and Q(yti , p

t
i) are cross-entropy function of

source domain and target domain for classification, where
Q(ysi , p

s
i ) is the cross-entropy used for classification problem

in source domain, ysi is denoted as the i-th data belongs to
the real category in source domain, and psi is denoted as the
predicted probability in source domain, Q(yti , p

t
i) is the cross-

entropy used for classification problem in target domain, yti is
denoted as the i-th data belongs to the real category in target
domain, and pti is denoted as the predicted probability in target
domain, and ns and nt represent the number of training data of
the source and target domains. m is defined as the number of
classification categories, ysi,j and yti,j are respectively denoted
as the i-th data in Ds and Dt, the data belongs to the real

category of the j-th category. psi,j and pti,j are expressed as
the predicted probabilities that belongs to the predict category
of the j-th category of Ds and Dt respectively. The purpose
of Lc is to minimize the classification error.

IV. A SEMI-SUPERVISED TRANSFER LEARNING WITH
DYNAMIC ASSOCIATE DOMAIN ADAPTATION FOR HAR

In this section, we propose a HAR algorithm based on semi-
supervised dynamic associate domain adaptation learning in
WiFi networks to predict unlabeled activity recognition with
the cross-domain data. The algorithm is divided into four
phases. The system structure of DADA-AD scheme is shown
in Fig. 1.
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Fig. 1. System structure of DADA-AD scheme.

A. Data collection and processing phase

CSI matrix H is performed six steps, including missing
packet filling, burst noise removal, background estimation,
feature extraction, feature enhancement, and data augmenta-
tion operations. In this work, we use one transmitting antenna
(Nr = 1) and three receiving antennas (Ns = 3) for five kinds
of activity recognition; standing, sitting, squatting, jumping,
and falling. We provide a 2D diagram of the each data matrix
in Fig. 2.
Missing packet filling: The linear interpolation is used to
repair the lost packets. The lost packet hj,k(i) can be repaired
by a simple linear interpolation function as:

hj,k(i) = (i− p)
hj,k(n)− hj,k(p)

n− p
+ hj,k(p) (6)

where hj,k(p) and hj,k(n) are represented as the previous
packet and the next packet of hj,k(i), respectively. The output
matrix Hpf = [hpf (1), . . . , hpf (i), . . . , hpf (K)],where 1 ≤
i ≤ K, is obtained, where Hpf = liner interpolation(H).
Burst noise removal: We adopt the Wavelet transform denois-
ing algorithm to Hpf matrix to obtain Hnr matrix as follow.

Hnr = DWT (o, p,Hpf )

=

∫ ∞

−∞
2−

o
2ψ(2−oi− p)hpf (i) di

(7)

A 6-level discrete wavelet transform is used to decompose,
and Symlet is used as the wavelet base, and the denoised
CSI packet sequence will be reconstructed through inverse
transform.
Background estimation: We let hnr(i) be represented as
hnr(i) = hbe(i) + hfe(i), for 1 ≤ i ≤ K. The main work
is to estimate the dynamic CSI vector hfe(i), be generated
by the human activities, so hbe(i) is initially obtained, for
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1 ≤ i ≤ K, by adopting the exponentially weighted moving
average (EWMA) algorithm [6], as follows.

hbe(i) = λhnr + (λ− 1)hbe(i− 1) (8)
where 1 ≤ i ≤ K, λ is the forgetting factor, where 0 ≤ λ ≤ 1.
Each new estimated point is recursively calculated from the
previous observations and attenuated by a forgetting factor. If
static CSI matrix Hbe, is finding, so the dynamic CSI matrix
Hfe is obtained by Hfe = Hnr −Hbe.
Feature enhancement: We adopt the similar feature enhance-
ment algorithm [3] to obtain the correlation matrix H̃ , where
H̃ = Hfe ×HfeT . The correlation matrix between the signals
on all subcarriers M eliminates the time dimension informa-
tion, leaving the characteristics of the correlation between the
subcarriers.
Data augmentation: To enhance the robustness of model
training, the data augmentation technique is used to enlarge
the training data set to generate more training data. In this
work, the correlation matrix H̃ will be augmented by adopting
the spin, mask, and zoom methods.

Raw Data

Source Target (A)Target (B)

Burst 

Noise Removal

 Feature

Enhancement

 Data

Augmentation

 Spin

Mask

Zoom

Feature

Extraction

Background

Estimation

Squat Jump Sit Stand

Missing 

Packet Filling

Fall

Source Target (A)Target (B) Source Target (A)Target (B) Source Target (A)Target (B) Source Target (A) Target (B)

Fig. 2. The 2-D diagrams of CSI data pre-processing.
B. Pre-training phase

The basic training network of this work is adopted a deep
DenseNet model [7].The structure of AD showns in Fig. 3. In
denseblock, the output of all previous layers is connected as
input, zDo , for the next layer, be expressed as:

zDo = σD(D0, ..., DL−1) (9)

where, σD represents a non-linear transformation function,
and DL−1 represents the output of the L − 1 layer in the
denseblock. Assuming that each layer in the denseblock uses k
convolution kernels. Let the channel number of the feature map
in the input layer be c0, and the last output channel number
is

CD = c0 + kD(L− 1) (10)

where, denseblock utilizes the bottleneck architecture to re-
duce the calculation cost. We expect to adding the channel
attention mechanism to strengthen the correlation between
feature channels to improve training accuracy. Suppose there
are CD input channels, the number of output channels, CT ,
of a denseblock is expressed as:

CT = θCD (11)

where 0 < θ ≤ 1, θ is the compression factor. The output
feature, zTo , by the connection layer is expressed as:

zTo = σT (z
D
o ) (12)

where σT represents the non-linear transformation, which is
repeatedly used in the transition layer [7], by adding the ECA
network as a substructure, it is embedded in the connection
layer to learn feature weights to achieve better training results.

The relationship can be expressed as CT = ψ(cs) , where ψ
is the approximate exponential mapping function, is expressed
as ψ(cs) = 2(γ∗cs−ω), given the channel dimension CT , the
adaptation channel size cs [8], i.e. the number of neighbouring
channels, is expressed as:

cs =

∣∣∣∣ log2(CT ) + ω

γ

∣∣∣∣
odd

(13)

where ω and γ is set as 1 and 2. With ECAT, the channel
and feature size is adjusted and the channel dimension is also
reduced, and the important channel weight can be increased
through channel attention mechanism. The weight is expressed
as:

wo = σcs
ECA(z

T
o ) (14)

σcs
ECA is an adaptation non-linear transformation which is

composed of global average pooling and 1×1×cs convolution.
Consequently, the output weighted feature zECAT

o is,

zECAT
o = zTo ∗ wo (15)

by multiplying weight wo and output zTo of the connection
layer. After repeating the denseblock structures with ECAT
mechanism twice, the maxpooling operation MP is applied
to the feature to extract the maximum value.

mo =MP (zpo) (16)
where zpo is the final output before reaching to the flattening
layer, where mo is the flattened feature. Finally, mo pass
through a f -layer fully connected layer to obtain the final
feature, denoted as d and used for the final activity prediction
through a fully connected layer by an activation function of
softmax.

psi =Wo × d+ bo (17)

where psi represents the predicted value of H̃s
i , where Wo

and bo are trainable parameters. After obtaining the final
activity prediction, the loss function is calculated through cross
entropy, that we have defined in formula 4.
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Fig. 3. (a) The attention-based DenseNet (AD) model. (b) Illustration of
Denseblock with a 1× 1 convolution layer and a 3× 3 convolution layer. (c)
Illustration of transition block with a 1×1 convolution layer, a 2×2 pooling
layer, and an ECA structure.
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C. Dynamic associate domain adaptation phase

The source domain and target domain are mapped into
the same feature space. Let Si = ϕ{H̃s

i }i=1,...,ns
, Uj =

ϕ{H̃}tii=1,...,n , Lk = ϕ{H̃t
i }i=n+1,...,nt

, then dot product is
used to calculate the similarity of the source domain and the
target domain. The similarity of domain features is calculated
by a similarity matrix between the source domain and the
target domain, Fij = Si·Uj and Gik = Si·Lk, where Fij is the
similarity matrix of the unlabeled data of the source domain
and the target domain, and Gik is the similarity matrix of the
labeled data of the source domain and the target domain.

After obtaining the similarity matrix, Fij , a conversion
probability PSU

ij followed by [9] is

PSU
ij = P (Uj |Si)

= SMcolumns(F )ij =
(exp(Fij))∑
j′ exp(Fij′)

(18)

where PSU
ij is the conversion probability of the similarity

matrix Fij by applying softmax function for the column of
Fij . To more consideration of DADA, we further calculate
PSL
ik as follows. Similarly, the conversion probability from

[9] of the target domain of Fij is,

PUS
ij = P (Si|Uj)

= SMrows(F )ij =
(exp(Fij))∑
i′ exp(Fi′j)

(19)

where PUS
ji is the conversion probability of the similarity

matrix Fij by applied softmax function to the row of Fij . To
more consideration of DADA, we also further calculate PLS

ik

as follows. Following [9], the subsequent calculation of the
associated similarity for unlabeled data in the target domain
can be expressed as PSUS = (PSUPUS)ij =

∑
n P

SU
in PUS

ni ,
where PSUS

ij [9] is the round-trip probability of similarity
matrix Fij , starting from Si and ending at Sj . Assuming
that the label mapped back to Sj is unchanged relative to
Si, the label distribution of Si [9] is expressed as Yij =

{1/Si class(Si)=class(Sj)
0 else .
The cross-entropy with the round-trip probability can be

expressed as LSUS = Q(Yij , P
SUS), but this round-trip

mapping cannot directly reflect the difference degree, so we
further modify the ADA by dynamically utilizing a different
ratio of labeled data of the target domain to map back to
the source domain to obtain the difference degree. Since both
parties have labels, the new defined cross-entropy calculation,
LLS , is performed through the conversion probability of PLS

ik

and the distribution probability Jij of the label data of the
target domain mapped to the source domain,

LLS = Q(Jij , P
LS) (20)

Assuming that the label mapped to Si relative to Lk is
unchanged, the label distribution of Yij can be expressed as

Jik = {
1

Lk
class(Lk)=class(Si)

0 else . The divergence between the
two domains is,

Ldiv = max[Q(Yij , P
SUS), Q(Jij , P

LS)] (21)

where Ldiv is the loss of the divergence of the two domains.
Two different mapping functions is referenced to illustrate the
distance degrees.

It is unreasonable that the calculation of Lvis under the
data distribution must be balanced [9]. This is because that
the number of unlabeled data is unknown before training. To
provide the data imbalance capability and release the limitation
of Lvis, our DADA scheme is replaced traditional Lvis [9]
with a new loss function of synchronization, denoted Lsyn, as
follows.

Lsyn = Q(PUS
j , PSU

j )

subject to


PSU
j =

∑
j′

PSU
ij′

PUS
j =

∑
j′

SMcolumns(P
SU
ij′

T
)

(22)

where PSU
j adds up the columns in line units and PUS

ij
T

adds up the columns in line units to make sure that both
PSU
j and PUS

ij
T are still kept in same distribution. This work

is measured the correlation which can avoid only correlating
the simple and easily correlated data in the unlabeled target
domain, under the data distribution of Uj is imbalance. Finally,
Lsim(Ds, Dt) is obtained by

Lsim(Ds, Dt) = βLdis + (β − 1)Lsyn (23)

where β is the hyperparameter of the combined targets. Lsim

is represented as the combined loss, Ldiv and new constructed
Lsyn.

D. Associate knowledge fine-tuning phase

In the last phase, the learned features are transferred through
the HAR of the image with domain-invariant characteristics,
and the shallow weights of the source domain learned through
pre-training phase are frozen as common features, and knowl-
edge transfer is performed on the deep layer of the model.

The maximum pooling operation MP is applied to the
feature to extract the maximum near-row flattening. This
operation is expressed as formula 16, where mo is the set
of data features from source domain Ds and domain domain
Dt, and is used as flattened feature, and mo passes through
the k-layer fully connected layer to calculate the similarity of
the k-layer feature Lsim, as given.

Dense

block 2

Dense

block 1

ECAT

block 1
ECAT

block 1
Dense

block 3

Input/output layer n*n convolution layerFlatten layer

Source domain

labeled data flow

n units of fully

 connected layer
n

3
128 64 5

Jump
Squat

Stand
Sit
Fall

DNN Embedder Diversity loss

Classfication loss

Synchronize loss
Target domain

labeled data flow
Target domain

unlabel data flow

(a)

= (ℎ +1 + ) 
ℎ1 = ( 1 + )  ℎ = (ℎ −1 + )  

1 −
ℒ( )

1

 

−
ℒ( )

 

+1 −
ℒ( )

+1

 

Fig. 4. Example of associate knowledge fine-tuning phase.
l=f1∑
fk

Lsim(Dl
s, D

l
t) (24)
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where l is the current number of layers. The similarity values
of the k-layer features are accumulated as part of the loss.

The final feature is obtained by d = ds ∪ dt, which is used
for the final activity prediction through the fully connected
layer with the activation function of softmax, where psi =
Wo × ds + bo, pti = Wo × dt + bo, where Wo and bo are
trainable parameters, and psi is the predicted value of H̃s

i , and
pti is the predicted value of H̃t

i . Finally, the total loss can be
represented as

arg min∗ Lf

Lf = λLc + (1− λ)

fk∑
l=f1

Lsim(Dl
s, D

l
t)

(25)

Let
∑fk

l=f1
Lsim

(
Dl

s, D
l
t

)
be similarity between two domains

of the fully connected layer. The final goal is to minimize Lf ,
which Lf is the combined function of Lsim and Lc, where λ
is the hyper-parameter of the hybrid objective function, which
0 ≤ λ ≤ 1.

As shown in Fig. 4, the weighs before flatten layer are
frozen and the similarity loss with all data of both domains
are calculated. The backpropagation operation is done to
update the weights of the fully connected layer. For instance
as shown in Fig. 4,

∑f3
l=f1

Lsim

(
Dl

s, D
l
t

)
is similarity loss

under max
[

1
ns

∑ns

i=1Q (ysi , p
s
i ) ,

1
n

∑n
i=1Q (yti , p

t
i)
]
, where

f3 denotes an example of 3 fully connected layer in our work.

Tx

Rx1

Rx3

Rx2

Tx

Rx1

Rx3

Rx2

Tx

Rx1

Rx3

Rx2

Intel 5300 nic

Target(A)

Target(B)

Source

Fig. 5. Layout of three experimental areas (a) source domain with the size
of is 5m × 4m, (b) target domain A with sizes of 10m × 4m, (c) target
domain B with sizes of 3m× 4m.

V. EXPERIMENTAL RESULT

The environment setup is described, mainly including the
model parameter settings for our experimental results. In our
experimental, the AI GPU utilizes NVIDIA RTX 3080, and the
AI framework adopts pytorch version 1.4.0. The programming
environment is the Python 3.8 version under Windows 10.
The WiFi CSI data acquisition framework uses the Intel IWL
5300 NIC tool [10], two computers installed Ubuntu 14.04.4
equipped with the Intel 5300 NIC are used as the interface
programming environment. The recognition activity patterns
in our experimental are: jumping, squatting, sitting, standing
and falling. The experimental parameters are given in in Table
I. In the source domain as shown in Fig. 5. In the experimental,
we use source, target(A), and target(B) to represent the source

domain, target domain A, and target domain B. The data
augmented data set is 1.5 times than that of the original
training set by adopting the rotate, map, and mask techniques.
To illustrate the effect of environment-independent human
activity recognition, the source domain is used to train the pre-
trained model, and the pre-trained model is used to transfer
trained knowledge to target(A) and target(B).

TABLE I
EXPERIMENT PARAMETER.

Environment Source Target(A) Target(B)
Sampling frequency 1000 Hz

Transmit antenna 1 antenna
Receiving antenna 3 antenna

Sampling time 3 seconds
Subcarriers per link 30 subcarriers

Source data set 4000 1500
Target data set 1500 500

Data expansion factor 1.5
Weight adjustment λ 0.5
Compression factor θ 0.5
Weight adjustment β 0.5

Learning rate 0.001
Drop out 0.5

1) Pre-training accuracy (PTA): The experimental results
of pre-training accuracy (PTA) vs. epochs are shown in Fig.
6. The PTA is the ratio of the number of correct classi-
fication prediction to the total number of predictions. Fig.
6(a) illustrates that the PTA of AD is better than that of
other schemes due to the advantage of the feature attention
and reuse strategy. DANGR scheme does not use the feature
enhancement, which leads to the poor learning efficiency. All
other schemes adopt the feature enhancement, but leads to the
huge differences in PTA. In general, feature enhancement is
helpful for the pre-training. Experimental result also shows
that PTA of pre-training schemes with data augmentation
and attention mechanisms is higher than that of pre-training
schemes without data augmentation and attention mechanism.
The PTA of pre-training with the different number of antennas
vs. epoch is illustrated in Fig. 6(b). The number of antennas
affects PTA. With the same number of antennas, the PTA of
our AD scheme is better that that of other schemes.

2) Recognition accuracy (RA): Table II provides shows that
RA vs. various ratios of labeled data for target(A) and tar-
get(B) under target data ratio = (1:1:1:1:1). We also observed
that the average RA of our AD-DADA scheme > that of
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TABLE II
RECOGNITION ACCURACY (RA) OF ALL CASES FOR ENCOUNTERING FOR TARGET(A) AND TARGET(B).

Model
Target data ratio 1:1:1:1:1 1:1:0.5:1:0.5 1:1:1:1:0.1

Domain Scheme 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

AD

Target(A)

DADA 94.4% 96.7% 96.8% 96.9% 97.1% 93.9% 96.0% 96.1% 96.2% 96.4% 89.5% 91.2% 91.7% 92.8% 93.1%
ADA 93.5% 94.9% 95.5% 95.4% 95.2% 88.1% 89.7% 91.7% 93.3% 94.2% 87.2% 89.7% 89.2% 88.5% 88.3%

MK-MMD 91.9% 92.3% 93.8% 95.9% 96.9% 91.1% 91.7% 93.8% 95.1% 96.3% 87.0% 88.9% 90.5% 91.8% 93.1%
MMD 83.2% 83.9% 85.1% 89.3% 97.0% 83.7% 85.1% 87.7% 91.3% 96.2% 84.9% 85.7% 88.2% 90.7% 93.0%

Target(B)

DADA 95.1% 97.4% 97.6% 97.8% 98.1% 94.7% 96.8% 97.6% 97.8% 97.9% 92.1% 93.7% 94.0% 94.7% 95.4%
ADA 94.9% 95.6% 96.3% 95.9% 95.5% 89.3% 90.9% 93.3% 95.1% 96.1% 89.3% 90.5% 93.7% 93.4% 92.9%

MK-MMD 93.3% 93.9% 94.4% 96.1% 97.5% 92.8% 93.1% 94.4% 96.1% 97.5% 89.4% 91.5% 92.1% 93.6% 95.4%
MMD 87.6% 88.7% 91.0% 94.8% 97.4% 86.6% 87.6% 91.0% 94.8% 97.1% 85.1% 86.6% 89.1% 92.2% 95.4%
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Fig. 6. PA vs. epoch for(a) data argumentation in different methods. (b)
different number of antennas in different methods.

AD-ADA scheme > that of AD-MK-MMD scheme > that
of AD-MMD scheme > that of DANDR scheme > that
of HAR-MN-EF scheme from the perspective of ratios of
labeled data. The improvement of RA for target(B) is better
than that of target(A). This is because that target(B) is a
small area. The experimental result of RA vs. various ratios
of labeled data for target(A) and (b) target(B) under target
data ratio = (1:1:0.5:1:0.5). We observed that if ratio of
labeled data = 25%, the RA can be improved, especially
for the data imbalance problem is occurred. In general, our
proposed AD-DADA can provide a general adjustment scheme
to dynamically increase the ratio of labeled data if a user
encountering a new poor target environment.

VI. CONCLUSIONS

In this paper, a semi-supervised transfer learning with
dynamic associate domain adaptation is proposed for human
activity recognition. DADA can provide a dynamic ratio of
labeled data set/unlabeled data set. Finally, the experimental
results shows that if the data is unbalanced, the average
accuracy of DADA is 4.17% higher than that of ADA, but
if there is no data unbalance, it is only 1.08%. In future work,
we may extend this research result to mmWave sensor network
for human activity recognition with fine motion.
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