

# Chapter 1:

## Introduction of IEEE 802.11

## Prof. Yuh-Shyan Chen

Department of Computer Science and Information Engineering National Taipei University





### **Networked World**

- Networked Taiwan
  - broadband networks, external networks, number of AP's
- Service networks
  - network service, web service, content, e-government, etc.
- Social networks
  - ◆ social capital
  - a fully connected social in Taiwan
- Examples:
  - ◆Keng-Ting Public Wireless Access (墾丁大街)
  - ◆Wireless Tourguide System (屏東海生舘)





## **R&D Directions**

- Discontinuity:
  - examples:
    - ∠ traditional services → web services
    - ∠ telecom → wireless LAN (integration)
- By 2005, over 80% notebooks will have wireless interfaces.
- By 2005, 10% broadband Internet access through public and campus WLAN hot spots.



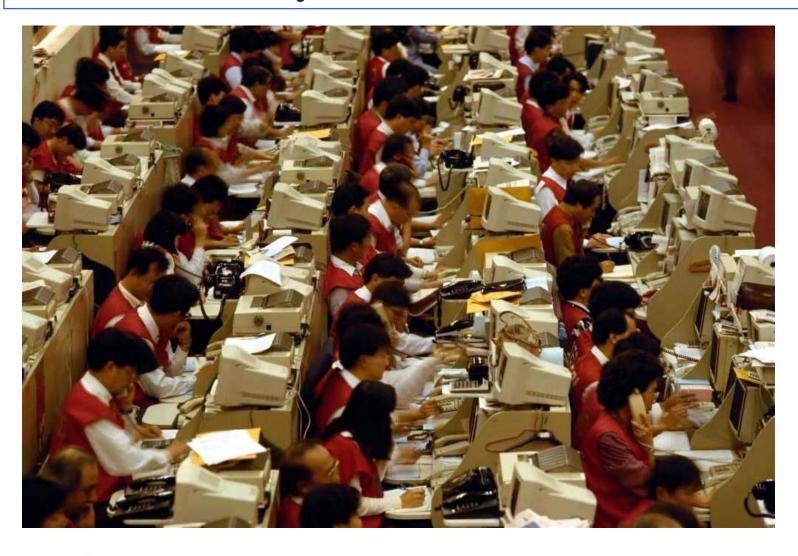


# Why WLAN Grows So Fast?

- easily deployed (like Ethernet)
- no need to gather millions of subscribers
- Telecom operators embrace WLAN:
  - content services (which need very broadband)
  - ◆ VoIP
- WLAN is NOT waiting for the "killer applications".
  - unlike 3G, WLAN does not have the "King's New Cloth" problem
  - ◆ Telecomm carriers like BT, Telia, and Korea Telecom are entering the WLAN market.






## **Taiwan's Control Points?**

- a technology that a company can exert influence:
  - operating systems, such as Windows and Linux
  - Web browser
- IEEE 802.11 a/b/g
- iB3G (integrated services over B3G networks):
  - WLAN/GSM/GPRS or WLAN/3G handsets
  - WLAN-enabled services, as well as related security and billing systems





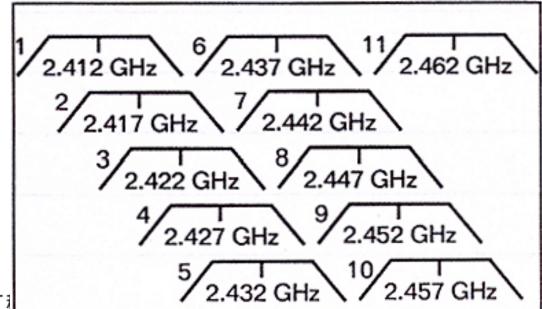
# Why do we need MAC?





# Why Do We Need MAC?










## Scope

- To develop a medium access (MAC) and physical layer (PHY) specification for wireless connectivity for fixed, portable, and moving stations within a local area.
- 11 channels in 2.4 GHz
  - ◆3 separate, clean channels for simultaneous usage







### Energy spread in 802.11 based on DSSS:

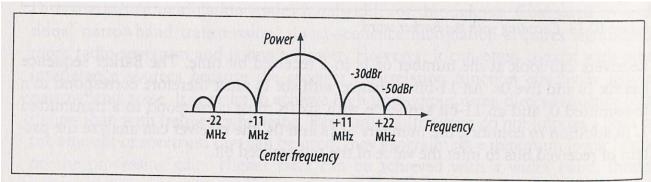
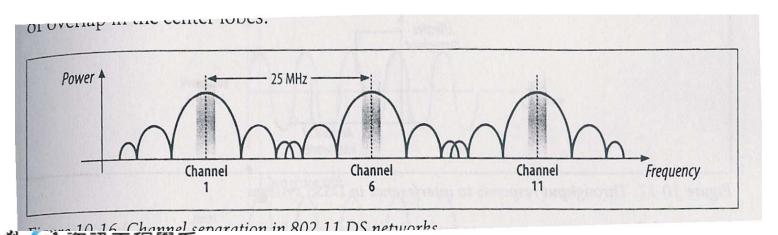




Figure 10-15. Energy spread in a single 802.11 DS transmission channel

## Channel separation in 802.11 based on DSSS:





## **Channels in Different Countries**

Table 10-5. Channels used in different regulatory domains

| Regulatory domain                         | Allowed channels                                                                      |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| US (FCC)/Canada (IC)                      | 1 to 11 (2.412-2.462 GHz)                                                             |  |  |
| Europe, excluding France and Spain (ETSI) | 1 to 13 (2.412-2.472 GHz)<br>10 to 13 (2.457-2.472 GHz)<br>10 to 11 (2.457-2.462 GHz) |  |  |
| France                                    |                                                                                       |  |  |
| Spain                                     |                                                                                       |  |  |
| Japan (MKK)                               | 14 (2.484 GHz)                                                                        |  |  |





# IEEE Std 802

### 802.2 LOGICAL LINK CONTROL

### **802.1 BRIDGING**

DATA LINK LAYER

| 802.3      |
|------------|
| MEDIUM     |
| ACCESS     |
| (Ethernet) |
| 802.3      |
| PHYSICAL   |

| 802.11   |
|----------|
| MEDIUM   |
| ACCESS   |
| (WLAN)   |
| 802.11   |
| PHYSICAL |

|    | 002.12      |    |
|----|-------------|----|
|    | MEDIUM      |    |
|    | ACCESS      |    |
| (( | Gigabit LAN | 1) |
|    | 802.12      |    |
|    | PHYSTCAL    |    |

802.12



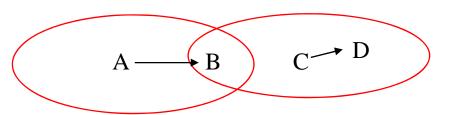
## **MAC Protocol Overview**

- MAC should be developed independent of the physical underneath it, whether it is DSSS, FHSS, or infrared.
- Basic data rate: 1 to 20 Mbits/sec
- Authentication
  - ◆ link-level authentication process
  - ◆ not intended to provide end-to-end, or user-to-user authentication
- MAC Traffic:
  - asynchronous data service: in a best-effort basis
  - ◆ time-bound service: as connection-based data transfer





## **MAC Protocol Overview (cont)**


- CSMA/CA: carrier sense multiple access with collision avoidance
  - a station wishing to send must sense the medium
  - mandate a minimum gap between continuous frames
  - collision avoidance: a random backoff after the medium is sensed idle
  - only decrement the backoff interval while the medium is free
  - ◆ all non-broadcast packets will be immediately ACKed∠ if no ACK is received, the frame is repeated immediately



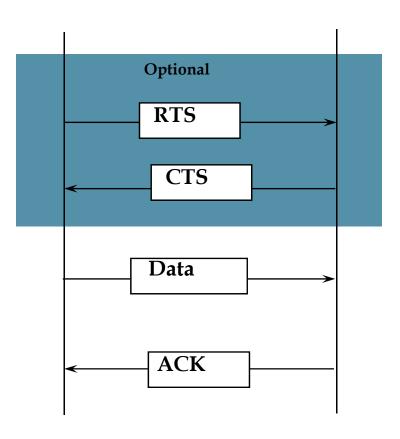


## **MAC Protocol Overview (cont)**

hidden terminal problem:



- RTS-CTS exchange:
  - RTS = request to send
  - $\diamond$  CTS = consent to send
  - problem: high overhead for short frames




$$A \stackrel{CTS}{\longleftarrow} B \stackrel{CTS}{\longleftarrow} C \qquad D$$



# **Basic Exchange Sequence**

起始工作站 目的地工作站







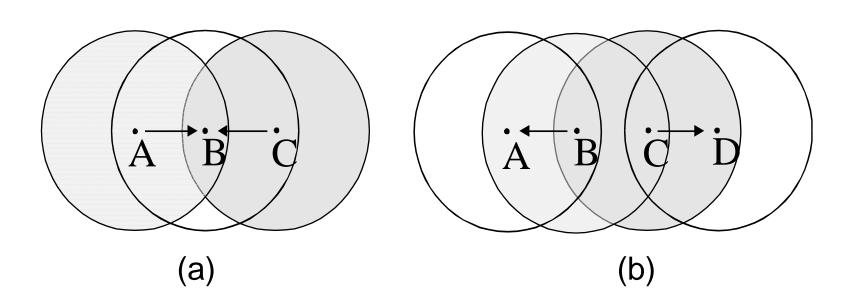



Fig. 1: (a) the hidden terminal problem, (b) the exposed terminal problem





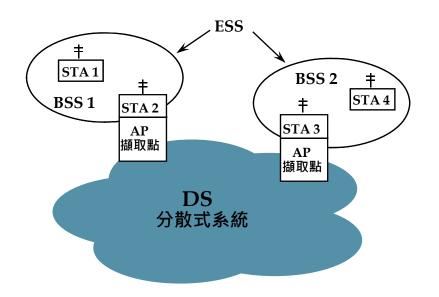
## **MAC Protocol Overview (cont)**

- IEEE 802.11 only supports RTS-CTS in an optional basis:
  - only stations wishing to use this mechanism will do so
  - but stations need to be able to respond appropriately in reception





## **Characteristics of Wireless LAN**

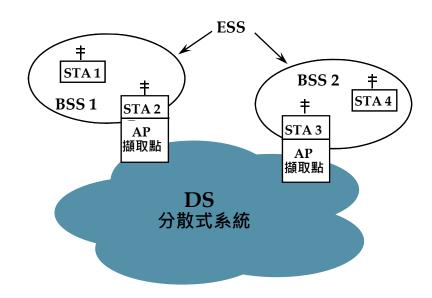

- Air Media Impacts:
  - broadcast nature: limited point-to-point connection range
  - ◆ shared medium, unprotected from outside signals
  - less reliable
- Mobility of Stations
- Interaction with other 802 Layers
  - ◆802.11 consists of only PHY and MAC layers.
  - ◆802.11 should appear the same to higher-layer (LLC) 802-style LAN. So station mobility should be handled within the MAC layer.





## 802.11 Architecture

- STA:
  - any device that contains an 802.11-conformed MAC and PHY
- Basic Service Set (BSS):
  - ◆ A set of STAs controlled by a single CF (Co-ordination Function).
  - The member STAs in a BSS can communicate with each other directly (when no hidden terminal).

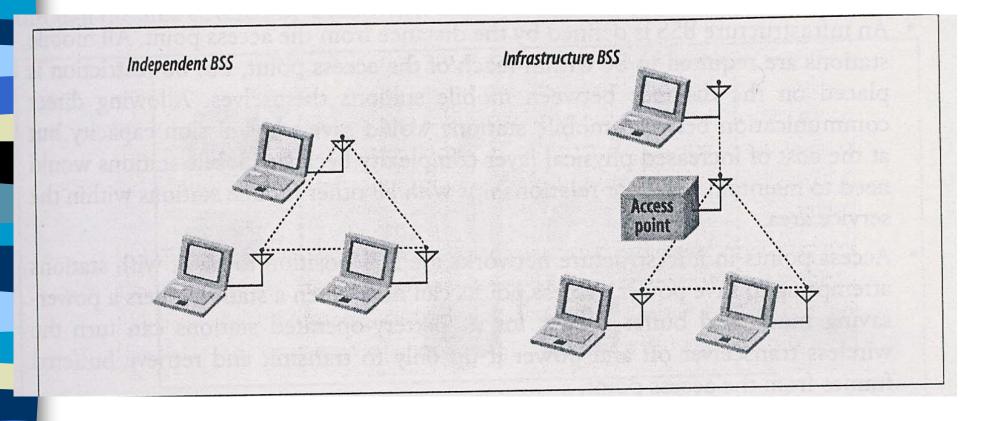









- Extended Service Set (ESS):
  - ◆ A set of BSSs integrated together.
  - ◆ The ESS network appears the same to an LLC layer as an independent BSS network.
  - ◆ Stations within an ESS can communicate with each other and mobile stations may move from one BSS to another transparently to LLC.






# **Independent BSS and Infrastructure BSS**

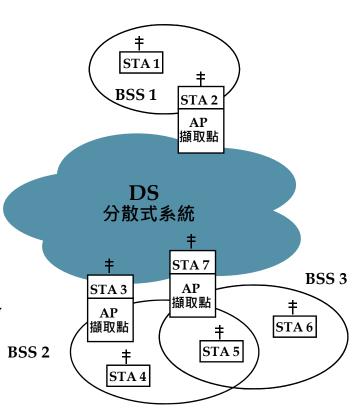
■ Independent BSS = IBSS

- Infrastructure BSS
  - ◆ (never called IBSS)





### **BSSID**


- Each BSS has an ID, a 48-bit identifier to distinguish from other BSS.
- In an infrastructure BSS,
  - ◆BSSID = MAC address of the AP.
- In an IBSS, BSSID has
  - ◆ Universal/Local bit = 1
  - $\bullet$  Individual/Group bit = 0
  - ◆46 randomly generated bits
- The all-1s BSSID is the broadcast BSSID.
  - used when mobile stations try to locate a network by sending probe request





# **Possible 802.11 Configurations**

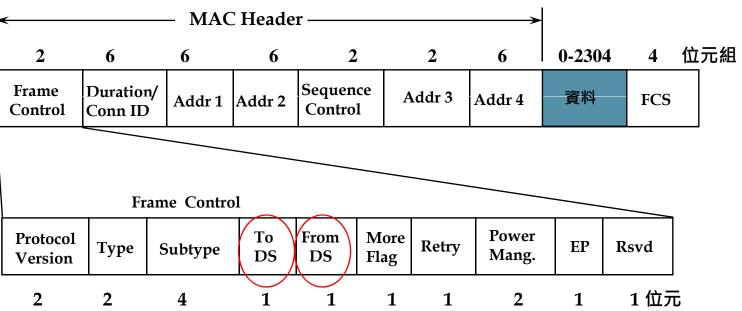
- The following are possible in an ESS:
  - physically disjoint.
  - partially overlap.
  - physically collocated (to provide redundancy).
- Multiple independent ESSs may be physically present in the same place.
  - ◆ An ad-hoc network can operate in a location where an ESS network already exists.
  - Physically adjacent ESS networks can be set up by different organizations.



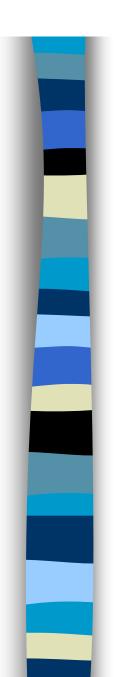




## **Frame Types**


- Management Frames:
  - timing and synchronization
  - authentication and deauthentication
- Control Frames:
  - ◆ to end contention-free period (CFP)
  - handshaking during the contention period (CP)
  - ack during CP
- Data Frames:
  - data frames (in both CFP and CP)
  - data frames can be combined with polling and ACK during CFP






## **MAC Frame Formats**

- Each frame consists of three basic components:
  - ◆MAC Header (control information, addressing, sequencing fragmentation identification, duration, etc.)
  - ◆ Frame Body (0-2304 bytes)
  - ◆IEEE 32-bit CRC









#### Frame Control Field :

- ◆ Retry: Indicates that the frame is a retransmission of an earlier frame.
- ◆ Duration/Connection ID: Used to distribute a value (us) that shall update the Network Allocation Vector in stations receiving the frame.
  - ✓ During the contention-free period, this field may be replaced with a connection ID field.
  - ∠ Contention-based data uses duration to indicate the length of the transmission.
- ◆ Address Fields: Indicate the BSSID, SA, DA, TA (Transmitter address), RA (Receiver address), each of 48-bit address.
- ◆More Flag:
- ◆ Power Management :
  - ∠ Active Mode
  - ∠ PS Mode (Power Save)



### IBSS data frame:

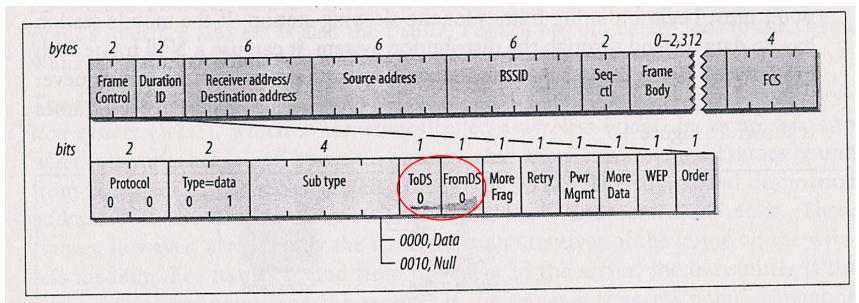



Figure 4-8. IBSS data frame





#### Frames from the AP:

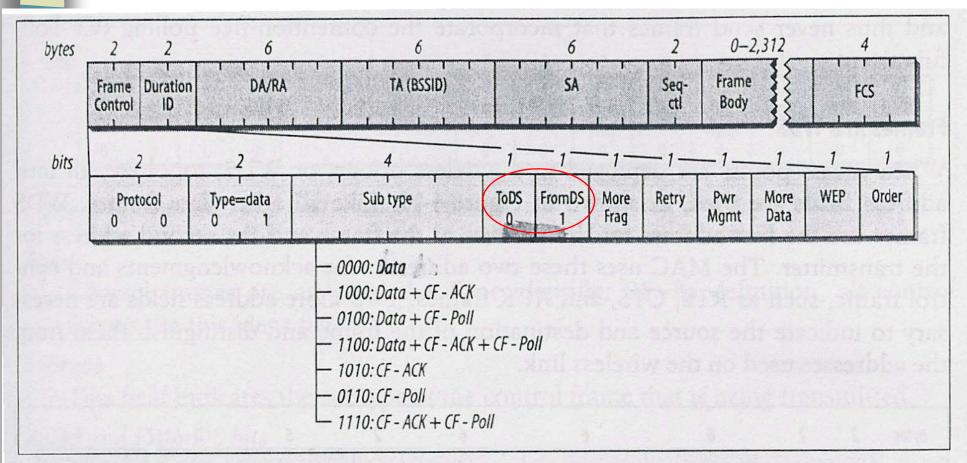
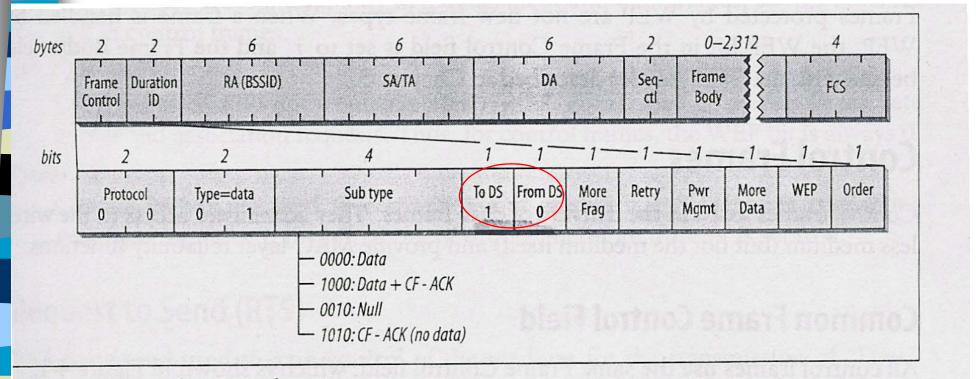
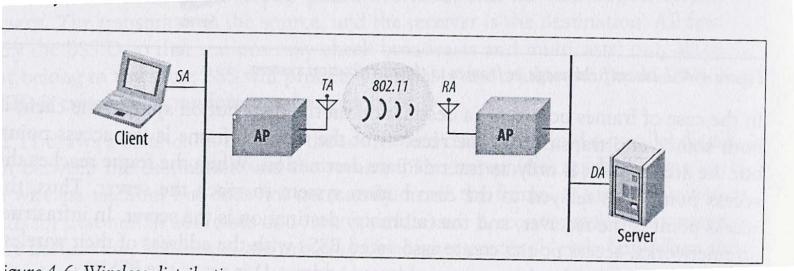


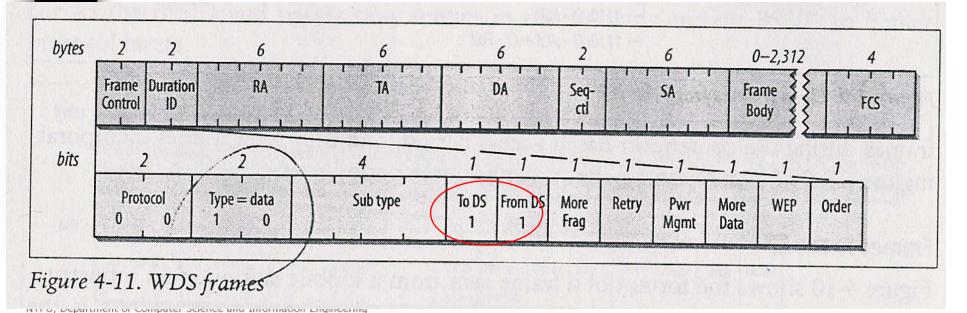

Figure 4-9. Data frames from the AP





#### Frames to the AP:



Figure 4-10. Data frames to the AP



WDS (wireless distributed system, or wireless bridge) frames



joure 4-6 Wireless distribution system



## **Control Frames**





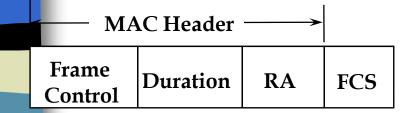
MAC Header ---

Frame Control Duration RA TA FCS

#### **CTS Frame**

Frame Duration RA FCS

- ◆RTS (request-to-send) Frame
  - **RA**: the addr. of the STA that is the intended immediate recipient of the pending directed data or management frame


Control

- **TA:** the addr. of the STA transmitting the RTS frame
- **Duration:** T(pkt.) + T(CTS) + T(ACK) + 3 \* SIFS
- ◆CTS (clear-to-send) Frame
  - **RA:** is taken from the TA field of the RTS frame.
  - **Duration:** T(pkt.) + T(ACK) + 2 \* SIFS



#### **ACK Frame**

#### **PS-Poll Frame**

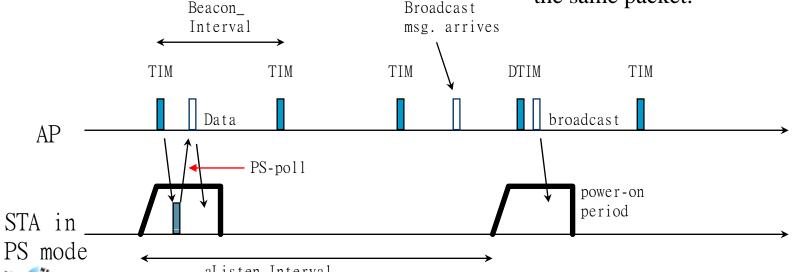


| <del>-</del>     |     |        |    |     |
|------------------|-----|--------|----|-----|
| Frame<br>Control | AID | BSS ID | TA | FCS |

- ACK Frame
  - ◆ **RA:** is taken from the addr. 2 field of the data, management, or PS-Poll frame
- PS-Poll Frame
  - ◆ When a station wakes from a PS mode, it transmits a PS-Poll to the AP to retrieve any frames buffered while it was in the PS mode.
  - ◆ **TA:** the addr. of the STA transmitting the Poll frame
  - ◆ AID = association ID (a 2-byte numeric number to identify this association)
  - $\diamond$  **BSS ID** = address of the AP



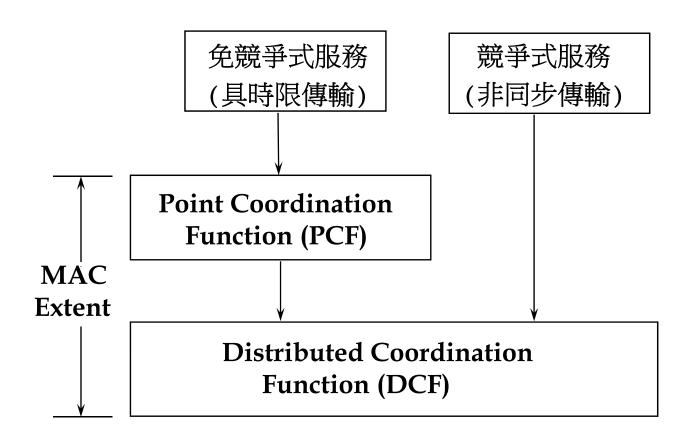
- An STA can be in Active mode
   (AM) or Power-Save mode (PS).
  - ◆ In PS mode, the STA will enable its receiver in every *aListen\_Interval* period.
  - ◆ The AP should be informed of the STA's entering PS mode, in which case all arriving frames will be <u>buffered</u>.


The AP will encode in each Beacon a TIM:



- ◆ TIM = Traffic-Indication-Map (indicating the STA which has buffered frames)
- ◆ DTIM = Delivery TIM

  (indicating a broadcast msg.,
  which will be sent
  immediately after the DTIM
  without receiving PS-poll)


✓ TIM and DTIM are carried by the same packet.

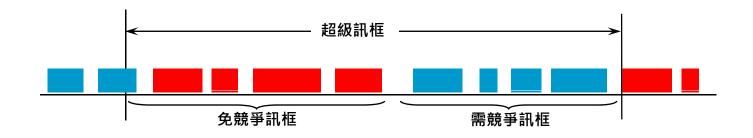




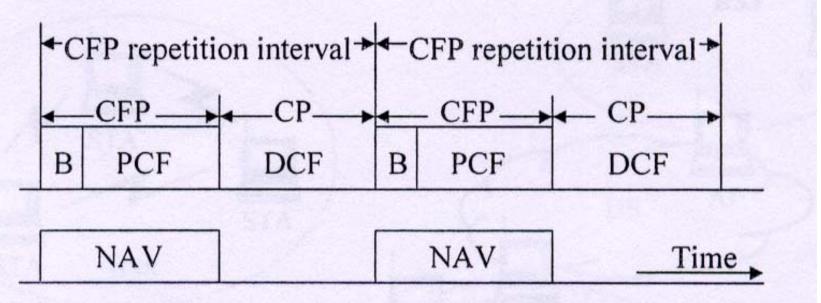


## **MAC** Architecture









### **MAC Architecture**

- Distributed Coordination Function (DCF)
  - ◆ The fundamental access method for the 802.11 MAC, known as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
  - ◆ Shall be implemented in ALL stations and APs.
  - ◆ Used within both ad hoc and infrastructure configurations.
- Point Coordination Function (PCF)
  - An alternative access method
  - Shall be implemented on top of the DCF
  - ◆ A point coordinator (polling master) is used to determine which station currently has the right to transmit.
  - ◆ Shall be built up from the DCF through the use of an <u>access</u> priority mechanism.

- Different accesses to medium can be defined through the use of different values of <u>IFS</u> (inter-frame space).
  - ◆ PCF IFS (PIFS) < DCF IFS (DIFS)
  - ◆ PCF traffic should have higher priority to access the medium, to provide a *contention-free* access.
  - ◆ This PIFS allows the PC (point coordinator) to seize control of the medium away from the other stations.
- Coexistence of DCF and PCF
  - ◆DCF and PCF can coexist through superframe.
  - <u>superframe</u>: a contention-free period followed by a contention period.







CFP: Contention-Free Period B: beacon

CP: Contention Period NAV: Negative Allocation Vector

Fig. 2 Coexistence of PCF and DCF





## **Distributed Coordination Function**

- Allows sharing of medium between PHYs through
  - CSMA/CA and,
  - random backoff following a busy medium.
- All packets should be acknowledged (through ACK frame) immediately and positively.
  - ◆ Retransmission should be scheduled immediately if no ACK is received.





## DCF (cont)

- Carrier Sense shall be performed through 2 ways:
  - physical carrier sensing: provided by the PHY
  - virtual carrier sensing: provided by MAC

    - ✓ The use of RTS/CTS is under control of RTS\_Threshold.
    - ✓ An NAV (Net Allocation Vector) is calculated to estimate the amount of medium busy time in the future.
- Requirements on STAs:
  - can receive any frame transmitted on a given set of rates
  - can transmit in at least one of these rates
  - ◆ This assures that the Virtual Carrier Sense mechanism work on multiple-rate environments.





## DCF (cont)


- MAC-Level ACKs
  - ◆ Frames that should be ACKed:
    - **∠** Data
    - ∠ Poll
    - **∠** Request
    - **∠** Response
  - ◆ An ACK shall be returned immediately following a successfully received frame.
  - ◆ After receiving a frame, an ACK shall be sent after SIFS (Short IFS).
    - ∠ SIFS < PIFS < DIFS
      </p>
    - ∠ So ACK has the highest priority.





# **Priority Scheme in MAC**

- Priorities of frames are distinguished by the IFS (inter-frame spacing) incurred between two consecutive frames.
- **3** IFS's:
  - ◆ SIFS: the highest priority
    - ∠ ACK, CTS, data frame of a fragmented MSDU (i.e., continuous frames), and to respond to a poll from the PCF.
  - ◆PIFS (PCF-IFS): 2nd highest
    - ∠ by PCF to send any of the Contention Free Period frames.
  - ◆DIFS (DCF-IFS): 3<sup>rd</sup> highest
    - ∠ by the DCF to transmit asynchronous MPDUs
  - ◆EISF (extended IFS): lowest
    - **∠** by DCF to retransmit a frame





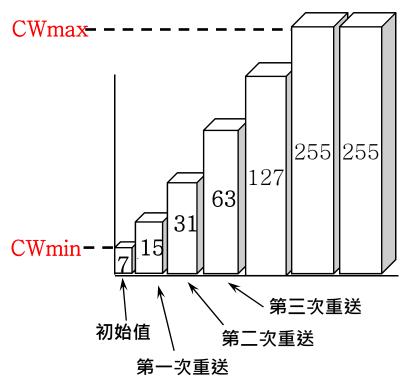
## **DCF:** the Random Backoff Time

- Before transmitting asynchronous MPDUs, a STA shall use the CS function to determine the medium state.
- If idle, the STA
  - defer a DIFS gap
  - transmit MPDU
- If busy, the STA
  - defer a DIFS gap
  - then generate a random backoff period (within the contention window CW) for an additional deferral time to resolve contention.





## **DCF:** the Random Backoff Time (Cont.)

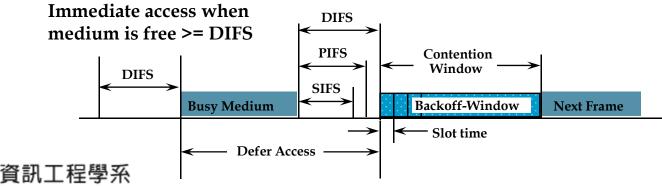

#### **Backoff time = CW\* Random() \* Slot time**

where CW = starts at CWmin, and doubles after each failure until reaching CWmax and remains there in all remaining retries

(e.g., CWmin = 7, CWmax = 255)

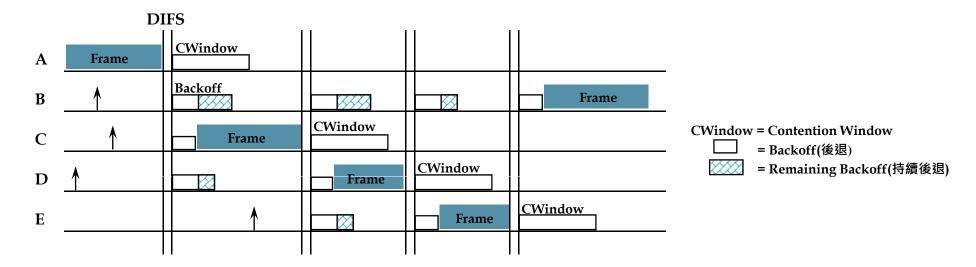
Random() = (0,1)

Slot Time = Transmitter turn-on delay +
medium propagation delay +
medium busy detect response time






### **DCF Access Procedure**

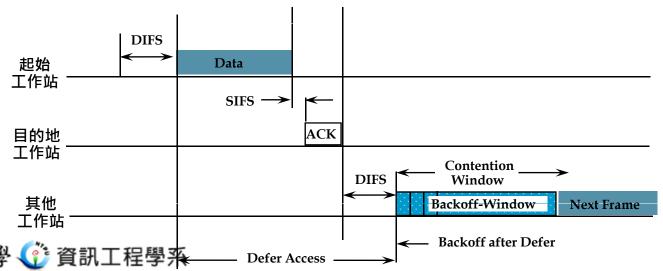



- CSMA/CA
- A STA can try to send when:
  - no PCF detected
  - or, Contention Period of a Superframe when using a PCF.
- Basic Access
  - ♦ A STA with a pending MPDU may transmit when it detects a free medium for  $\geq$  DIFS time.
  - ◆ But when a Data, Poll, Request, or Response MPDU is to be sent, the Backoff procedure shall be followed.



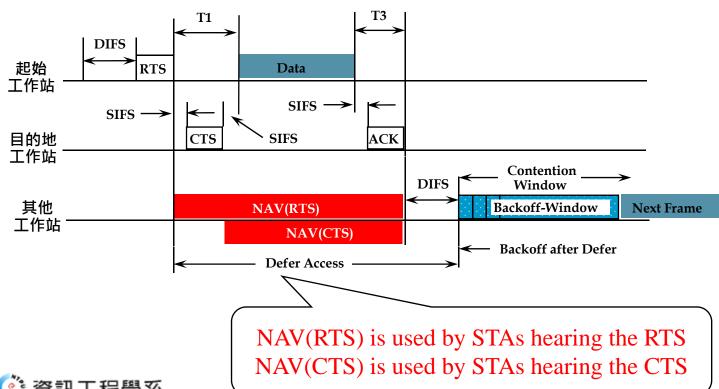
### Backoff Procedure

- The Backoff Timer should be frozen when medium is busy.
- ◆ The timer should be resumed only when the medium is free for a period > DIFS.
- ◆ Transmission shall commence whenever the Backoff Timer reaches 0.




### ■ To ensure fairness and stability:

◆ a STA that has just transmitted a frame and has another queued frame, shall perform the backoff procedure.




- Transmission can be done with or without RTS/CTS.
- STA can choose from 3 options:
  - never use RTS/CTS
  - always use RTS/CTS
  - ◆ use RTS/CTS whenever the MSDU exceeds the value to RTS\_Threshold
- Option 1: Direct MPDU transfer Without using RTS/CTS
  - ◆ The duration field in the data frame is used to estimate NAV.
  - $\triangleright$  NAV = duration + SIFS + ACK + DIFS

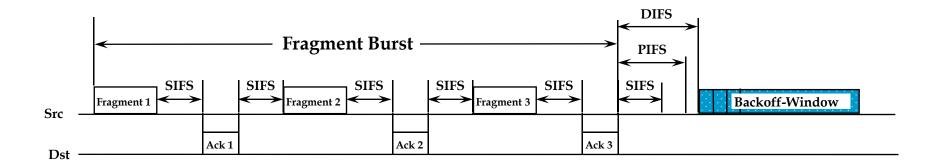




- Option 2: Direct MPDU transfer by setting NAV through RTS/CTS frames:
  - ◆RTS and CTS frames contain a <u>Duration field</u> based on the medium occupancy time of the MPDU.
  - ◆ The duration is from (the end of the RTS or CTS frame) to (the end of the ACK frame).






# RTS/CTS Recovery Procedure and Retransmit Limits

- After an RTS is transmitted, if the CTS is not received within a predetermined CTS\_Timeout (T1), then a new RTS shall be generated.
  - ◆ The CW is doubled in each failure.
  - ◆ Repeated until the RTS\_Retransmit\_Counter reaches an RTS\_Retransmit\_Limit.
- If a direct DATA frame is sent:
  - ◆ backoff mechanism shall be used when no ACK is received within a predetermined ACK\_Window(T3)
  - ◆ This procedure shall be continued until the ACK\_Retransmit\_Counter reaches an ACK\_Retransmit\_Limit.



### **Control of the Channel**

- Once a station has contended for the channel, it will continue to send fragments until
  - all fragments of a MSDU have been sent,
    - ∠ Fragmentation\_Threshold: to determine to fragment or not.
  - an ack is not received:
    - ✓ It will attempt to retransmit the fragment at a later time (according to the backoff algorithm) and go through the contention procedure again.
  - a dwell time boundary is reached
- The SIFS is used to guarantee its priority.





# **Duration Reservation Strategy**

- Each Fragment and ACK acts as a "virtual" RTS and CTS for the next fragment.
- The duration field in the data and ACK specifies the total duration of the next fragment and ACK.
- The last fragment and ACK will have the duration set to zero.
- Ex: fragmentation without RTS/CTS

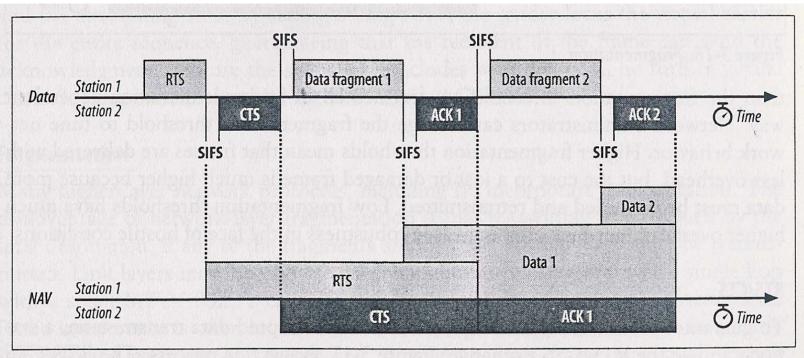


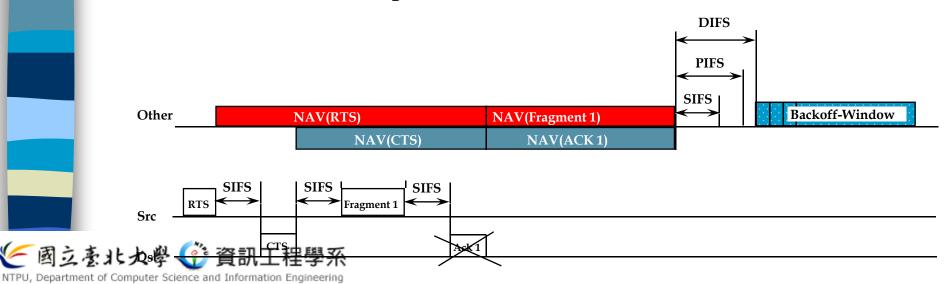



Figure 3-16. Fragmentation



### Ex: fragmentation with RTS/CTS

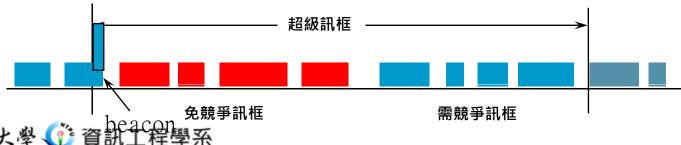




Figure 3-18. RTS/CTS with fragmentation

- Goal of fragmentation:
- shorter frames are less suspectable to transmission errors, especially under bad channel conditions 國立を北大學 ② 資訊工程學系



# **Missing ACKs**


- If ACK is not received by the source, the medium is wasted.
  - ◆ The source must wait until the NAV (Fragment 1) expires, and then contend for the channel again.
  - ◆ All other stations already setup their NAVs can not access the medium until their NAVs have expired.
  - ◆ If ACK is not sent by the destination, stations that cannot hear the source will not update their NAV and thus can access the channel.



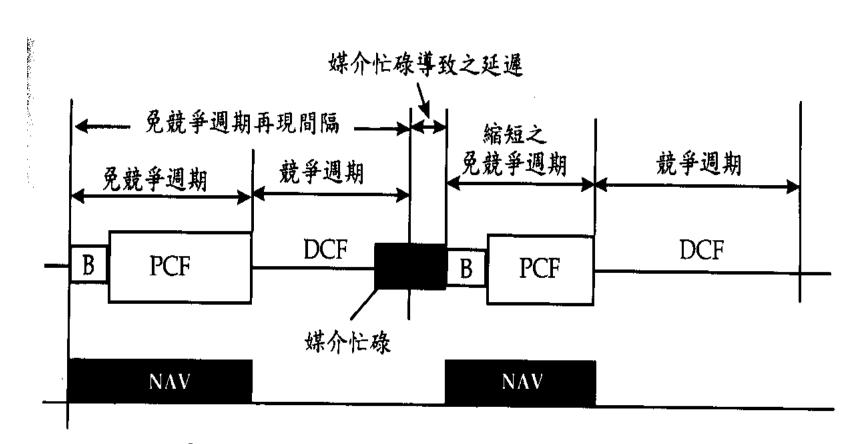


## **Point Coordination Function (PCF)**

- The PCF provides <u>contention-free</u> services.
- One STA will serve as the <u>Point Coordinator (PC)</u>, which is responsible of generating the Superframe (SF).
  - ◆ The SF starts with a beacon and consists of a Contention Free period and a Contention Period.
  - ◆ The length of a SF is a manageable parameter and that of the CF period may be <u>variable on a per SF basis</u>.
- There is one PC per BSS.
  - ◆ This is an <u>option</u>; it is not necessary that all stations are capable of transmitting PCF data frames.






### **PCF** Protocol

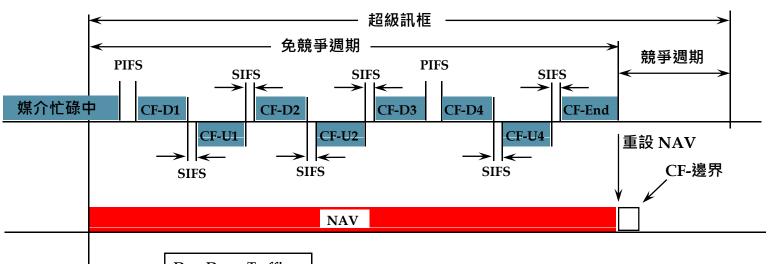
- Based on a polling scheme controlled by PC:
  - ◆ PC gains control of the medium at the beginning of the SF by waiting for a PIFS period and sending a BEACON.
  - ◆ CFP\_Repetition\_Interval: to maintain the length of the SF
  - ◆ The polling list is left to the implementers. (a GOOD research point!!)





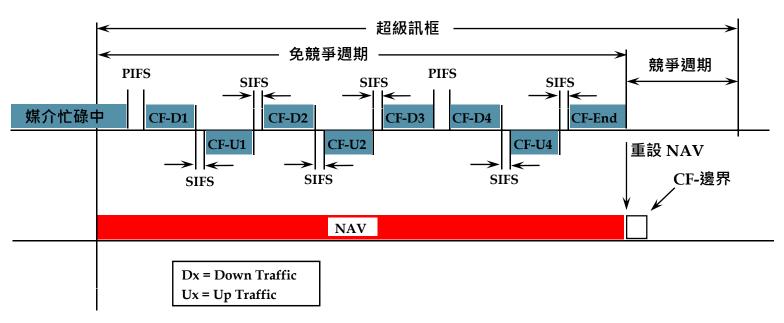
## **Delayed Superframe**

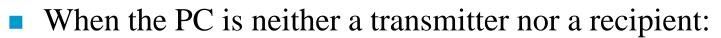



【■13-31】 免競爭週期/競爭週期 交替出現



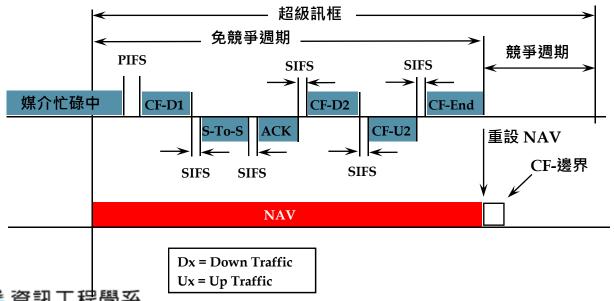
### **How to POLL**





- The PC first waits for a PIFS period.
  - ◆ PC sends a data frame (CF-Down) with the CF-Poll Subtype bit = 1, to the next station on the polling list.
  - ◆ When a STA is polled, if there is a data frame (CF-Up) in its queue, the frame is sent after SIFS with CF-Poll bit = 1.
  - ◆ Then after another SIFS, the CF polls the next STA.
  - ◆ This results in a burst of CF traffic.
  - ◆ To end the CF period, a CF-End frame is sent.






- If a polled STA has nothing to send, <u>after PIFS</u> the PC will pollethe next STA.
- NAV setup:
  - ◆ Each STA should preset it's NAV to the maximum CF-Period Length at the beginning of every SF.
  - ◆ On receiving the PC's CF-End frame, the NAV can be reset (thus may terminate the CF period earlier).





WMN

- ♦ When the polled STA hears the CF-Down:
  - ∠ It may send a Data frame to any STA in the BSS after an SIFS period.
  - ∠ The recipient (.neq. PC) of the Data frame returns an ACK after SIFS.
- ◆ Then PC transmits the next CF-Down after an SIFS period after the ACK frame.
  - ✓ If no ACK is heard, the next poll will start after a PIFS period.







### Homework #1:

- 1. What's hidden-terminal and exposed-terminal problems?
- 2. How to use the RTS/CTS to reduce the hidden-terminal problem ?
- 3. What's operations of Distributed Coordination Function (DCF)?
- 4. What's operations of Point Coordination Function (PCF)?

