
On Scheduling Vehicle-Roadside Data Access

Yang Zhang
Department of Computer
Science & Engineering
The Pennsylvania State

University
yangzhan@cse.psu.edu

Jing Zhao
Department of Computer
Science & Engineering
The Pennsylvania State

University
jizhao@cse.psu.edu

Guohong Cao
Department of Computer
Science & Engineering
The Pennsylvania State

University
gcao@cse.psu.edu

ABSTRACT
As vehicular networks become popular, more and more peo-
ple want to access data from their vehicles. When many
vehicles want to access data through a roadside unit, data
scheduling becomes an important issue. In this paper, we
identify some challenges in vehicle-roadside data access. As
vehicles move pretty fast, the requests should be served
quickly. Also, vehicles may upload data to the roadside
unit, and hence the download and upload requests com-
pete for the same bandwidth. To address these challenges,
we propose several scheduling schemes. We first propose a
basic scheduling scheme called D ∗ S to consider both ser-
vice deadline and data size. We then enhance it by using
a single broadcast to serve multiple requests. Finally, we
identify the effects of upload requests on data quality, and
propose a Two-Step scheduling scheme to provide a balance
between serving download and update requests. Simulation
results show that the Two-Step scheduling scheme outper-
forms other scheduling schemes.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Algorithms, Management, Performance

Keywords
RoadSide Unit(RSU), Upload/Download, Data Quality, Schedul-
ing

1. INTRODUCTION
Recently, vehicle-roadside data access has received consid-

erable attention [11, 5, 8, 7]. With RoadSide Unit (RSU)
such as 802.11 access point, vehicles can access data stored
in the RSU or even access the Internet through these RSUs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VANET’07, September 10, 2007, Montréal, Québec, Canada.
Copyright 2007 ACM 978-1-59593-739-1/07/0009 ...$5.00.

From 2003, the US Department of Transportation has in-
vested millions of dollars [10] to integrate vehicles and RSUs
and to make the current transportation system more intel-
ligent. Chrysler-Daimler has introduced the “InfoFuel” sys-
tem to provide Mercedes drivers the ability to access wireless
data through roadside hotspots [1]. Also, FCC dedicates the
5.9 GHz frequency specifically allocated to vehicle-vehicle
and vehicle-roadside communications and enacts the Ded-
icated Short Range Communications (DSRC) standard in
2004. Later, IEEE develops several standards to ensure that
vehicles and roadside infrastructures can communicate with
each other. All these efforts in academy, government, and
industry make vehicle-roadside data access mature enough
to be used in our daily life.

In vehicle-roadside data access, the RSU can act as a
router for vehicles to access the Internet. Although this
can bring many benefits to the drivers, the deployment cost
and maintenance cost are very high. As another option,
RSU can also be just used as a buffer point (or data is-
land) between vehicles. In this paper, we focus on the latter
paradigm due to its low cost and easy deployment. In this
paradigm, all data on the RSUs are uploaded or downloaded
by vehicles. For example, some data, especially those with
spacial/temporal constraints, only need to be stored and
used locally. The following applications also belong to this
case where the data are buffered at the RSUs, and will not
be sent to the Internet.

1. Value-added Advertisement: Store owners may want
to advertise their sale or activity information in nearby
area. Without Internet connection [20], they can ask
the running vehicles to carry and upload the advertise-
ment information to nearby RSUs. At the same time,
other vehicles driving around can download these ad-
vertisements and visit the stores.

2. Real-Time Traffic: Vehicles can report real-time traf-
fic observations to RSUs. The traffic data are stored
at RSUs, providing real-time query and notification
services to other vehicles. The data can be used to
provide traffic conditions and alerts such as road con-
gestion and accidents.

3. Digital Map Downloading: Due to the storage limita-
tions of memory card and frequent road construction,
it is impossible for vehicles to install all the most up-
to-date digital maps before traveling. Hence, vehicles
driving to a new area may hope to update map data
locally for travel guidance.

9

Different from traditional data access system in which
users can always wait for the service from the data server,
vehicles are moving and they only stay in the RSU area
for a short period of time. As a result, there is always a
time constraint associated with each request. Meanwhile, to
make the best use of the RSU and to share the information
to as many vehicles as possible, RSUs are often set at the
roadway intersections or areas with high traffic. In these ar-
eas, download (query) requests retrieve data from the RSU,
and upload (update) requests upload data to the RSU. Both
download and upload requests compete for the same limited
bandwidth. As the number of users increases, which request
to serve at which time will be critical to the system perfor-
mance. Hence, it is important to design an efficient schedul-
ing algorithm for vehicle-roadside data access. In this paper,
we design efficient solutions for scheduling vehicle-roadside
data access. Our contributions are as follows.

1. We first propose a basic low complexity scheduling
scheme called D ∗ S which considers both data size and
request deadline.

2. We improve the performance of the basic scheduling
algorithm by using broadcasting techniques to serve
more requests.

3. We study the tradeoffs between service ratio and data
quality, and propose a Two-Step scheme to address the
tradeoffs between uploads and downloads;

4. We conduct extensive simulations to study the perfor-
mance of the proposed scheduling schemes.

To the best of our knowledge, our work is the first to con-
sider time constraint and data quality for scheduling vehicle-
roadside data access.

The rest of this paper is organized as follows: Section 2
presents the background and necessary preliminaries. Sec-
tion 3 describes the limitation of three naive schemes and
presents a new scheduling scheme called D ∗ S. In section 4,
we study how to optimize scheduling by broadcasting. An
improved scheme called D ∗ S/N is proposed. We discuss
the impact of data staleness and propose a two-step schedul-
ing scheme in Section 5. Section 6 evaluates the performance
of the proposed schemes. Finally, we summarize the related
work in Section 7 and conclude the paper in Section 8.

2. BACKGROUND AND PRELIMINARIES

2.1 System Model
As shown in Figure 1, a large number of vehicles retrieve

(or upload) their data from (or to) the RSU when they are
in the communication range. The RSU (server) maintains
a service cycle, which is non-preemptive; i.e., one service
can not be interrupted until it finishes. When one vehicle
enters the RSU area, it listens to the wireless channel. All
vehicles can send requests to the RSU if they want to access
the data. Each request is characterized by a 4-tuple: <v-
id, d-id, op, deadline>, where v-id is the identifier of the
vehicle, d-id is the identifier of the requested data item, op
is the operation that the vehicle wants to do (upload or
download), and deadline is the critical time constraint of
the request, beyond which the service becomes useless. All
requests are queued at the RSU server upon arrival. Based

on the scheduling algorithm, the server serves one request
and removes it from the request queue.

Different from traditional scheduling services, data access
in vehicular networks has two unique features: 1) The arrival
request is only active for a short period of time due to vehicle
moving and coverage limitations of RSUs. When vehicles
move out of the RSU area, the requests not served have
to be dropped; and 2) Data items can be downloaded and
uploaded from the RSU server. The download and update
requests compete for the service bandwidth.

Figure 1: The Architecture of Vehicle-Roadside Ser-
vice Scheduling

We assume that each vehicle knows the service deadline of
its request. This is reasonable because when a vehicle with
GPS device enters the coverage area of a RSU, it can esti-
mate its leaving time based on the knowledge of its driving
velocity and its geographic position1.

2.2 Performance Metrics
In most previous work, the metrics for scheduling algo-

rithms are responsiveness (e.g., average/worst-case waiting
time [14, 4, 6]) or fairness (e.g., stretch [3, 17]). In most
of these works, requests do not have time constraints and
the data on the server are not updated or updated only by
the server. However, in the vehicle-roadside data access sce-
nario, requests not served within a time limit will be dropped
as the vehicles move out of the RSU area. Since update re-
quests compete bandwidth with other download requests,
some data may become stale after an update is missed, de-
grading the service quality. Therefore, compared with re-
sponsiveness and fairness, providing fresh data to more ve-
hicles is more important and we use the following metrics
for scheduling vehicle-roadside data access.

1) Service Ratio: Service ratio is defined as the ratio of
the number of requests served before the service deadline to
the total number of arriving requests. A good scheduling
scheme should serve as many requests as possible.

2) Data Quality : Data will become stale if a vehicle has
the new version of the data but fails to upload it before the

1After a vehicle establishes the connectivity with one RSU,
it can get the geographic information and radio range of
the RSU through beacon messages. With its own driving
velocity and position information, the vehicle can estimate
its living time, which is its service deadline.

10

vehicle moves out of the RSU range. The staleness of the
data will degrade the data quality for the download service.
In this paper, we use the percentage of fresh data access to
represent the data quality of the system. Therefore, a good
scheduling scheme should update data in time and try to
avoid data staleness.

It is difficult to achieve both high service ratio and good
data quality. Giving more bandwidth to download requests
can have a higher download service ratio, but a higher up-
date drop ratio and hence low data quality. If update re-
quests get more bandwidth, the service ratio decreases. There
is always a tradeoff between high service ratio and good data
quality. In the following sections, we first focus on improv-
ing the service ratio, and then design scheduling algorithms
considering both service ratio and data quality.

3. THE BASIC SCHEDULING SCHEMES
The primary goal of a scheduling scheme is to serve as

many requests as possible. We identify two parameters that
can be used for scheduling vehicle-roadside data access:

• DataSize: If the vehicles can communicate with the
RSU at the same data transmission rate, the data size
can decide how long the service will last.

• Deadline: If a request can not be served before its
deadline, it has to be dropped. Thus, the request with
an earlier deadline is more urgent than the request
with a later deadline.

3.1 Three Naive Schemes
There are three naive Schemes:

• First Come First Serve (FCFS): the request with the
earliest arrival time will be served first.

• First Deadline First (FDF): the request with the most
urgency will be served first.

• Smallest DataSize First (SDF): the data with a small
size will be served first.

Figure 2 compares the service ratios under these three
naive scheduling schemes. The experiment is conducted us-
ing the same simulation environment described in Section 6.
The inter-arrival time of the requests is determined by the
percentage of vehicles that will issue service requests, which
is varied along the x axis.

As shown in the figure, when the request arrival rate is
low, FDF outperforms FCFS and SDF. This is because when
the workload is low, the deadline factor has more impact
on the performance. After the urgent requests are served,
other pending requests can still have the opportunity to get
services. However, when the request arrival rate increases,
the service ratio of FDF drops quickly while SDF performs
relatively better. Since the system can always find short
requests for service, SDF can still keep a higher service ratio.
FCFS does not take any deadline or data size factors into
account when making scheduling decision, it has the worst
performance.

Clearly, FDF and SDF can only achieve good performance
for certain workloads only. This motivates us to integrate
the deadline and data size to improve the performance of
scheduling.

0.05 0.1 0.2 0.4 0.8
10

20

30

40

50

60

70

80

90

100

p (logscale)

S
er

vi
ce

 R
at

io
 (

%
)

FCFS
FDF
SDF

Figure 2: Service Ratio for FCFS, FDF and SDF
Scheme

3.2 The D ∗ S Scheduling
FCFS does not consider data size and request deadline.

FDF gives the highest priority to the most urgent requests
while neglects the service time spent on those data items.
SDF takes the data size into account but ignores the re-
quest urgency. As a result, none of them can provide a good
scheduling. Inspired by [4], we propose a new scheduling
scheme, called D ∗ S to consider both data size and deadline
when scheduling vehicle-roadside data access. Intuitively,

• Given two requests with the same deadline, the one
asking for a small size data should be served first.

• Given two requests asking for data with same size, the
one with earlier deadline should be served first.

Motivated by the above observations, each request is given
a service value based on its deadline and data size, called
DS value, as its service priority weight.

DS value = (Deadline − CurrentClock) ∗ DataSize

Here, product is used to connect the deadline and data
size factors because these two factors have different measure-
ment scales and/or units. With product, different metrolo-
gies will not bring any negative effect on the comparison of
two DS values.

At each scheduling time, the D ∗ S scheme always serves
the requests with the minimum DS value.

3.3 The Implementation of the D ∗ S Scheme
A straightforward implementation of the D ∗ S scheme is

to compute the DS values of all requests, and then select
the smallest one at the decision tick. This implementation
has a computation complexity of O(m), where m is the num-
ber of pending requests. Here, we propose a different data
structure to reduce the computation complexity. The data
structure uses two sorted lists to store the requests. One
list called D-List (Deadline-list) is used to record the dead-
line (D value) of each request. The other list called S-List
(dataSize-list) is used to record the size (S value) of the data
item that is asked by the request. D-List is ordered by the
increasing deadline of each request and S-List is sorted in
ascending order of the data size. As Figure 3 shows, the
searching procedure starts by examining the entry at the

11

Figure 3: Search Space Pruning Structure

top of D-List. With an index we can easily find the cor-
responding size entry in S-List and calculate its DS value.
The MinDS is set to the DS value of the first request in
D-List. At the same time, MinS can be calculated using
D’ which is the deadline value of the next entry in the D-
List, and the current clock time. Since the D-List is ordered
increasingly, it is known that for any unexamined entry to
have a DS value less than MinDS, it must have an S value
satisfying the inequality

S <
MinDS

D′ − CurrentClock

Then, we examine the entry at the top of S-List and cal-
culate its DS value with its S value and its corresponding
D value in D-List. The MinDS value need to be updated
with the current DS value if the current DS value is less
than MinDS. Similarly, since the S-List is sorted in ascend-
ing order, an unexamined request has a DS value less than
MinDS only if its deadline value satisfies

D <
MinDS

S′ + CurrentClock

where S′ is the data size value of the next entry in the S-List.
The search process keeps alternating between the D-List

and S-List, updating the MinDS value when an entry with
a DS value less than MinDS is encountered and pruning
the search space. The process stops when the checked en-
try goes across MinD or MinS, or when the search reaches
halfway of both lists. At this point, MinDS is known to be
the minimum DS value for all requests and that recorded
request can be served. Clearly, with this pruning technique,
the search space can diminish quickly and the computation
complexity can be reduced.

Figure 3 shows a simple example using these two lists.
Suppose that the current clock is 100. First, the top entry
(request a) in D-List is examined and the MinDS is set as
350 (= (101-100)*350). With this MinDS, we can calculate
MinS=175 (=350/ (102-100)). Next, we check the entry of
request e (the top of the S-List). The DS value of request
e is 500 (= (110-100)*50), which is larger than the current
MinDS, so MinDS does not need to be updated. We can
also get the value of MinS as 103.5 (=350/100+100). Then
the second entry of D-List is checked. Its DS value is 300
(= (102-100)*150). Since it is less than the current MinDS,
MinDS should be updated to 300, and MinS is set to 60

(=300/ (105-100)). Next, we go to the second entry (re-
quest c) of S-List. Because its size is larger than the current
MinS value, the search process can stop here since the un-
examined requests (with size ≥ 100 and deadline ≥ 103.5)
do not have a DS value less than MinDS=300. In this ex-
ample, we only need to check three index entries to find the
most suitable request for service. The overhead to maintain
this data structure is very low. Once an entry is added to
the list, it is not moved until the corresponding request is
served or dropped.

4. DOWNLOAD OPTIMIZATION: BROAD-
CASTING

4.1 The Basic Idea
The D ∗ S scheduling scheme considers both request dead-

line and data size, and it serves one request at one time. Ob-
serve that some vehicles may ask for the same data and the
wireless communication has the broadcast capability. If we
can delay some requested data and broadcast it before the
deadlines, several requests may be served through a single
broadcast. For example, several vehicles at an intersection
want to check the same traffic information. One broadcast
can serve all these requests. With this optimization, the
scheduling performance can be improved.

To improve the broadcast efficiency, the data with more
pending requests should be served first. We add one more
parameter to the D ∗ S scheme, i.e., the number of pend-
ing requests for the same data (N). We call the new scheme
D ∗ S/N . In this new scheme, the service value, DSN value,
is calculated as

DSN value = (Deadline − CurrentClock)

∗DataSize/Number

4.2 The Implementation of D ∗ S/N
The D ∗ S/N scheme can be implemented using a similar

dual-list data structure as in D ∗ S to reduce the computa-
tion complexity. The difference is that each entry records the
information for each request group for the same data item
instead of individual requests in D ∗ S. Because there are
three parameters (deadline, data size and pending requests
(N)) in consideration, we need to combine the S value and
N value in advance to form a single S/N list. Since the S/N
value of the corresponding data item can be updated when a
new request comes, this change does not bring much mainte-
nance overhead. At each scheduling decision tick, the same
pruning process is executed alternatively between D-List
and S/N-List until the request with minimal DSN value
is found.

4.3 The Selection of Representative Deadline
With the broadcast optimization, several requests can be

served simultaneously in a single broadcast, which leads to
more efficient use of shared bandwidth and a higher ser-
vice ratio. However, when calculating their DSN value, we
need to assign each pending request group a single deadline
to estimate the urgency of the whole group. If there are
more than one request waiting for the service, we can use
the earliest, the median or mean deadline of the group to
represent the group urgency. The earliest deadline reflects
the urgency of satisfying all requests in the group and the

12

mean and/or median deadline reflects the average urgency
of the requests group. With the same setting in Section 6,
we compare the performance under different representative
deadlines. The simulation results (Figure 4) show that se-
lecting different representative deadline does not have too
much impact on the scheduling performance. The earliest,
median, and mean deadlines lead to similar scheduling per-
formance. Therefore, in our later simulation settings, we
choose the earliest deadline to represent the urgency of all
pending requests in the same group.

0.05 0.1 0.2 0.4 0.8
70

75

80

85

90

95

100

p (logscale)

S
er

vi
ce

 R
at

io
 (

%
)

D*S/N (Earliest Deadline)
D*S/N (Median Deadline)
D*S/N (Mean Deadline)

Figure 4: The Service Ratio of D ∗ S/N with Earli-
est, Median, and Mean Deadline

5. UPLOAD OPTIMIZATION: TWO-STEP
SCHEDULING

D ∗ S/N can improve the service ratio, but it sacrifices the
service opportunity of the upload (update) requests. For up-
load request, it is not necessary to maintain several update
requests for one data item since only the last update is use-
ful. As a result, the N value of upload request is always 1 in
the D ∗ S/N scheme, and hence it is not fair for update re-
quests to compete for the service bandwidth. Clearly, more
update requests have to be dropped and the data quality
for downloading degrades as lots of later arriving download
requests will get the stale data. A possible improvement
is to incorporate a weight value to update requests to help
them get a higher priority in scheduling. However, it is quite
difficult to say how much weight should be given to the up-
date requests since in a dynamic system the degradation of
service quality by staleness and service ratio are incompa-
rable. Therefore, it is impossible to use one single queue
for both update and download [12]. Next, we propose a new
scheduling scheme with two separate queues and a Two-Step
scheduling approach to achieve the balance of data quality
and service ratio.

5.1 The Basic Idea
We use two priority queues: one for the update requests

and the other for the download requests. The RSU server
provides two queues with different bandwidth (i.e., service
probability). The benefit of using two separate priority
queues is that we only need to compare the download queue
and update queue instead of individual update and down-
load requests. The scheduling goes through two steps: the

first step chooses the service queue and the second step
chooses the most suitable service request. Because of their
specific concerns, update and download queues have their
own priority scheduling schemes, which makes the schedul-
ing more flexible.

5.2 Step I: Update Queue or Download Queue
Here we give a new definition, Service Profit, as the sum

of the profit gained from update and download requests.
Suppose the download requests share ρ (0 ≤ ρ ≤ 1) of the
bandwidth and the update requests share the rest: 1-ρ. We
need to set ρ to the best value to achieve the maximum
Service Profit. To do that, we need to find the relationship
between bandwidth allocation and the Service Profit that
the system can have.

The download requests can be served with fresh data or
stale data, and hence the profits they bring to the system
are different. Formally, Service Profit can be presented as

Service Profit = Update Profit

+FreshDownload Profit

+StaleDownload Profit

We assume one update request can contribute the same
profit as one download request with fresh data. If one up-
date request is dropped, all the following download requests
on that data item can only get the stale data and their ser-
vice qualities degrade with a coefficient, say α. The service
degrades until the data item is updated by the next update.

We use ru to denote the service rate of update requests.
Then the update profit rate depends on its service rate (ru)
and the bandwidth allocated to it (1 − ρ). After a time
period t, the update profit can be approximated as:

Update Profit � ru · (1 − ρ) · t
Similarly, we use rd to denote the service rate of the

download requests. The download profit relies on its ser-
vice rate (rd), the bandwidth allocation, and the quality for
each download. Note that the data quality is related to up-
loads. The more bandwidth allocated to the update queue,
the more requests will be served with fresh data. Therefore,
the download profit can be approximated by:

FreshDownload Profit � rd · ρ · (1 − ρ) · t
and

StaleDownload Profit � rd · ρ2 · α · t
Then the total profit can be given by

Service Profit � ru · (1 − ρ) · t + rd · ρ · (1 − ρ) · t
+rd · ρ2 · α · t

= rd · (α − 1) · tρ2 + (rd − ru) · t · ρ

+fu · t (0 ≤ ρ ≤ 1).

We can calculate the optimal ρ to maximize the Service Profit
by solving the quadratic function with the lineal constraint
on ρ. The optimal solution is:

ρ =

⎧
⎨
⎩

min(rd−ru

2(1−α)rd
, 1) (0 ≤ α < 1) ∧ (ru < rd)

0 ru ≥ rd

1 (a = 1) ∧ (ru < rd)

When α = 1, which means that the stale data do not have
any negative impact on the service quality, the bandwidth

13

allocation totally depends on the service rate of update and
download requests. Either update or download request that
has a higher service rate can take the whole bandwidth.

Since the value of ρ depends on the service rate of update
and download requests, which are related to the workload,
it should be able to adjust adaptively with the workload.
When an accident happens, there will be more update re-
quests. Also, the request workload at daytime and night
should be different. The workload is examined with a time
period τ , which is referred to as the adaptation window. At
the beginning of each τ , ρ is re-calculated. To learn about
the gradual change in workload over a period of time by uti-
lizing some history information, we record the information
of two time windows and get:

ρnew =

⎧⎪⎨
⎪⎩

min(
rd,k−1−ru,k−1
2(1−α)rd,k−1

, 1) (0 ≤ α < 1) ∧ (ru,k−1 < rd,k−1)

0 ru,k−1 ≥ rd,k−1

1 (a = 1) ∧ (ru,k−1 < rd,k−1)

ρk = (1 − β) ∗ ρk−1 + β ∗ ρnew

where rd,k−1 and ru,k−1 are the service rates of the previous
time period and β is a parameter to measure the importance
of the most recent value in comparison with the old value.

5.3 Step II: D ∗ S/N and D ∗ S/R
As discussed in Section 4, entries in the download queue

can be sorted based on their priority values calculated by
the D ∗ S/N scheme. In the update queue, we calculate
the priority values with another scheme, called D ∗ S/R,
where R is the service rate of the download requests in the
download queue of one data item. The basic idea of D ∗ S/R
is that we use the service rate of download requests in the
download queue to optimize the scheduling in the update
queue. For example, given two update requests with the
same DS value, the request that updates hot data should
have a higher service priority since when the data item is
updated, more download requests can get the fresh data
thus improving the system profit. Therefore, we add the
service rate, denoted by R, as a weight factor to the priority
calculation, that is:

DSR value = (Deadline − CurrentClock)

∗DataSize/R

The pruning process in D ∗ S/R can also be optimized by us-
ing the dual-list data structure, similar to that in D ∗ S/N .
The S/R-List is updated at the beginning of each adaptation
time window and the R value of each entry can be updated
similar to ρ, that is

Rk = (1 − β) ∗ Rk−1 + β ∗ Rnew

where Rnew is the number of served download requests of
one data item in the last adaptation window.

5.4 The Implementation of the Two-Step
Scheduling

According to previous discussions, the scheduling is based
on two separate priority queues. The bandwidth alloca-
tion for the update queue and the download queue depends
on the periodically evaluated ρ. At each decision tick, the
scheduler decides what queue (update or download) can get
the service. After that, it serves a request in the specific

Figure 5: Flow Chart of the Two-Step Scheduling

queue. If the update queue is chosen, the D ∗ S/R scheme
is used to pick the next request to serve. If the bandwidth
is assigned to the download queue, the D ∗ S/N scheme is
used. If one queue is empty, its service opportunity will be
given to the other queue immediately. Figure 5 describes
the flow chart of the Two-Step scheduling.

Figure 6: The Simulation Scenario Layout

6. PERFORMANCE EVALUATIONS

6.1 Experimental Setup
We developed an ns-2 [2] based simulator to evaluate the

proposed scheduling schemes. The experiment is based on
a 400m*400m square street scenario. One RSU server is
put at the center of the area. It is also the intersection of

14

0.05 0.1 0.2 0.4 0.8
10

20

30

40

50

60

70

80

90

100

p (logscale)

S
er

vi
ce

 R
at

io
 (

%
)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(a) Service Ratio

0.05 0.1 0.2 0.4 0.8
20

30

40

50

60

70

80

90

100

p (logscale)

F
re

sh
 D

at
a

R
at

io
 (

%
)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(b) Fresh Data Ratio

0.05 0.1 0.2 0.4 0.8
10

20

30

40

50

60

70

80

90

100

p (logscale)

P
ro

fit
 R

at
io

 (
%

)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(c) System Profit (α = 0.5)

Figure 7: The Effect of Workload

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

θ

S
er

vi
ce

 R
at

io
 (

%
)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(a) Service Ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

θ

F
re

sh
 D

at
a

R
at

io
 (

%
)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(b) Fresh Data Ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

θ

P
ro

fit
 R

at
io

 (
%

)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(c) System Profit (α = 0.5)

Figure 8: The Effect of Zipf Distribution Parameter θ

Table 1: Simulation Setup
Parameter Value
Simulation Time 900s
Transmission Rate 5Mbit/s = 625Kbyte/s[11]
Vehicle Velocity 15m/s
Wireless Coverage 200 m
Data size 50K ∼ 5M, average 2.5M
Vehicle-Vehicle Space 20m
Data set size 25
Zipf Parameter θ 0.8
Update Percentage 10%
Adaptation Window 40s

one horizontal road and one vertical road, where each two-
way road has four lanes (Figure 6). To simulate the vehicle
traffic, we randomly deploy 40 vehicles in each lane initially,
i.e., a total of 160 vehicles. All vehicles move towards either
end of the road. They are moving forth and back during
the simulation to mimic the continuous traffic flow in the
intersection area. When one vehicle reaches the end of the
road, which means the vehicle will move out of the RSU
area, its request not serviced will be dropped. Each vehicle
issues service requests with a probability p, (0 < p ≤ 1). A
larger p is used to simulate a heavy service workload and a
smaller p is for low workload. When one vehicle is served or
reaching the end of the road, it waits some time to issue a
new request. The inter-arrival time of each request follows
an exponential distribution with a mean of λ. Its density

function is:

f(t) = λe−λt

Similar to [19], the access pattern of each data item fol-
lows Zipf distribution. In the Zipf distribution, the access
probability of the ith data item is represented as follows:

Pi =
1

iθ
∑n

j=1
1
jθ

where 0 ≤ θ ≤ 1, n is the database size. When θ = 1, it is
the strict Zipf distribution. When θ=0, it becomes the uni-
form distribution. The data item size randomly distributes
between smin and smax. Most of the system parameters and
their default values are listed in Table 1.

6.2 The Effect of Workload
Figure 7 shows the effect of the request arrival rate to

the scheduling performance for the six schemes discussed in
this paper. As shown in Figure 7 (a), more requests have
to be dropped as the request arrival rate increases. Since
FCFS, FDF, SDF and D ∗ S serve each request individu-
ally, their service ratios decrease very quickly with the in-
creasing of workload. D ∗ S/N and the Two-Step scheme
use broadcast to optimize the service. With this technique,
they can achieve much higher service ratio than the other
four schemes because several download requests for the same
data item can be served simultaneously using a single broad-
cast. Since D ∗ S/N scheduling is not fair to update re-
quests, the data quality cannot be guaranteed. As Figure
7 (b) shows, when 80% of vehicles issue requests for service

15

10 30 50 70 90
10

20

30

40

50

60

70

80

90

100

Percentage of Download (%)

S
er

vi
ce

 R
at

io
 (

%
)

FCFS
FDF
SDF
D*S
S*S/N
2−Step

(a) Service Ratio

10 30 50 70 90
20

30

40

50

60

70

80

90

100

Percentage of Download (%)

F
re

sh
 D

at
a

R
at

io
 (

%
)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(b) Fresh Data Ratio

10 30 50 70 90
10

20

30

40

50

60

70

80

90

100

Percentage of Download (%)

P
ro

fit
 R

at
io

 (
%

)

FCFS
FDF
SDF
D*S
D*S/N
2−Step

(c) System Profit (α = 0.5)

Figure 9: The Effect of Download/Update Ratio

(heavy workload), only about 20% of all served requests can
get the up-to-date data, which is much lower than other
schemes. Figure 7(c) compares the total Service Profit ra-
tios of different schemes. Here, we set α = 0.5, which means
if one download request is served with stale data, it only
contributes 50% profits compared with other requests that
are served with fresh data. As can be seen, the Two-Step
scheme has a much higher service profit ratio than other
schemes.

6.3 The Effect of Access Pattern

6.3.1 θ

Figure 8 shows the performance as a function of the access
skew parameter θ. In Zipf distribution, when θ = 0, the
access pattern is uniformly distributed, and different data
items have similar popularity. As θ increases, the access
pattern becomes more skewed. Since FCFS, FDF, SDF and
D ∗ S make the scheduling decision based on individual re-
quest, the change of θ does not have too much impact on
their performance. For D ∗ S/N and the Two-Step scheme
that use broadcast optimization, they can benefit from the
skewness of the data access pattern with the increase of θ.
When the data access pattern becomes asymmetrical, pop-
ularity becomes the major performance factor. The popular
data can have a high service priority weight in D ∗ S/N and
Two-Step scheme, which helps improve the service ratio.

6.3.2 Download/Update Ratio
Figure 9 compares the performance of different schemes

when the download/upload ratio changes. When more down-
load requests come, the service ratio of D ∗ S/N scheme and
Two-Step scheme increases quickly. This performance im-
provement comes from the benefit of download broadcast-
ing. Because D ∗ S/N prefers service ratio rather than data
quality, as download rate increases, its fresh data ratio de-
creases. This is consistent with our previous discussion. The
Two-Step scheme can achieve relatively good performance
on both service ratio and data quality. Therefore, it has the
highest profit ratio.

6.4 Adaptivity to Traffic Condition
To study the adaptivity of the Two-Step scheme. We

divide the experiment period evenly into four intervals. The
first interval and the second interval have low workloads (p =
0.05) while the third and fourth have heavy workloads (p =

0.8). At the same time, the download ratios of the first and
third interval are low (10% download) while the second and
fourth intervals have high download ratios (90% download).
We create a sudden change at the start of each interval. This
experiment is to show how the Two-Step scheme can react to
the changes to different scenarios and adjust ρ accordingly.

As expected, the Two-Step scheme can achieve good per-
formance in almost all scenarios. Here, note that in the
third time interval with high workload and low download
ratio, the service ratio is relatively low compared with that
in other intervals(Figure 10(a)). This is because in this ser-
vice scenario, most arrivals are update requests. They need
to be serviced one by one and hence the advantage of broad-
casting cannot be well utilized. Also, although there may be
sudden performance drops at the start of a switch interval,
the Two-Step scheme adjusts ρ quickly and keeps a high per-
formance. Figure 10(d) shows the value of ρ over time. ρ is
the probability that download requests have higher priority
than upload requests. As shown in Figure 10(d), ρ is small
when the download rate is low, and ρ adapts quickly when
the download rate becomes high.

7. RELATED WORK
In this paper, we have studied scheduling issues for vehicle-

roadside data access. Although there are many works dis-
cussing how to benefit from vehicle-roadside data access [11,
5, 8, 7], they do not deal with the application-layer schedul-
ing issue for data access.

There are a large amount of work related to CPU and
job scheduling. Wong studied several scheduling algorithms
such as first-come-first-serve (FCFS), longest wait time (LWT),
most requests first (MRF) in the broadcasting environments
[16]. Later, many broadcast scheduling algorithms have
been proposed to reduce the waiting time and energy con-
sumption [14, 15, 6, 4]. Acharya and Muthukrishnan [3] in-
troduced a new performance metric called stretch for variable-
size data items and investigated several scheduling algo-
rithms. The work by [12] introduces the tradeoff between
respond time and data quality, but it is based on point-to-
point communication and does not take advantage of broad-
casting. All these works mainly focus on responsiveness such
as average/worst-case waiting time or fairness without con-
sidering the time constraints of the user requests. However,
in vehicular networks, time constraint of the request has to
be considered.

[9, 13] and [18] studied the scheduling problem in real-time

16

0 400 800 1200 1600
10

20

30

40

50

60

70

80

90

100

Time (sec)

S
er

vi
ce

 R
at

io
 (

%
)

 p=0.05
10%download

 p=0.05
90%download

 p=0.8
10%download

 p=0.8
90%download

(a) Service Ratio

0 400 800 1200 1600
90

91

92

93

94

95

96

97

98

99

100

101

Time (sec)

F
re

sh
 D

at
a

R
at

io
 (

%
) p=0.05

10%download

 p=0.05
90%download

 p=0.8
10%download

 p=0.8
90%download

(b) Fresh Data Ratio

0 400 800 1200 1600
0

10

20

30

40

50

60

70

80

90

100

Time (sec)

P
ro

fit
 R

at
io

 (
%

)

 p=0.05
10%download

 p=0.05
90%download

 p=0.8
10%download

 p=0.8
90%download

(c) System Profit(α = 0.5)

0 400 800 1200 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

ρ

 p=0.05
10%download

 p=0.05
90%download

 p=0.8
10%download

 p=0.8
90%download

(d) ρ

Figure 10: The Study of the Adaptivity to Traffic Condition

broadcasting environment and took time constraint into ac-
count. However, they ignored the data update issue. They
assume that data are read only or can only be updated by
the server. Hence, they only try to improve the service ratio
for download broadcasting. In contrast, our vehicle-roadside
data access model is different as both update and download
compete for the same bandwidth. Also, missing the update
degrades the data quality.

8. CONCLUSIONS
In the paper, we addressed some challenges in vehicle-

roadside data access. We proposed a basic scheduling scheme
called D ∗ S to consider both service deadline and data size
when making scheduling decisions. An efficient search space
pruning technique is presented to reduce the computation
complexity for making scheduling decisions. To make use
of the wireless broadcasting, we proposed a new schedul-
ing scheme called D ∗ S/N to serve multiple requests with a
single broadcast. We also identified the effects of upload re-
quests on data quality, and proposed a Two-Step scheduling
scheme to provide a balance between serving download and
update requests. Simulation results show that the Two-Step
scheduling scheme outperforms other scheduling schemes.
Further, the Two-Step scheduling scheme is adaptive to dif-
ferent workload scenarios.

To the best of our knowledge, this is the first paper to
address scheduling issues in vehicular ad hoc networks. The
unique challenges in vehicular networks such as time con-
straints and upload updates will motivate further research
in this area.

9. ACKNOWLEDGMENTS
This work was supported in part by National Science

Foundation (CNS-0092770, CNS-0519460, CNS-0721479).

10. REFERENCES
[1] http://grouper.ieee.org/groups/scc32/dsrc/video/.

[2] http://www.isi.edu/nsnam/ns/.

[3] S. Acharya and S. Muthukrishnan. Scheduling
on-demand broadcasts: New metrics and algorithms.
In Proceeding of MobiCom 98’, 1998.

[4] D. Aksoy and M. Franklin. R*W: A scheduling
approach for large-scale on-demand data broadcast.
IEEE/ACM Transactions on Networking, volume 7,
1999.

[5] V. Bychkovsky, B. Hull, et al. A measurement study
of vehicular internet access using in situ wi-fi
networks. In Proceedings of the 12th annual
international conference on Mobile computing and
networking(MobiCom ’06), pages 50–61, 2006.

[6] R. Gandhi, S. Khuller, Y. Kim, and Y. Wan.
Algorithms for minimizing response time in broadcast
scheduling. Algorithmica, 38(4):597–608, 2004.

[7] D. Hadaller, S. Keshav, T. brecht, et.al. Vehicular
opportunistic communication under the microscope. In
Proceedings of The 5th International Conference on
Mobile Systems, Applications, and Services(MobiSys
’07), 2007.

[8] B. Hull, V. Bychkovsky, Y. Zhang, et.al. Cartel: a
distributed mobile sensor computing system. In
Proceedings of the 4th international conference on
Embedded networked sensor systems(SenSys ’06),
pages 125–138, 2006.

17

[9] S. Jiang and N. Vaidya. Scheduling data broadcast to
“impatient” users. In Proceedings of MobiDE 99, pages
52–59, 1999.

[10] U. D. of Transportation. http://www.its.dot.gov/vii/.

[11] J. Ott and D. Kutscher. Drive-thru internet: IEEE
802.11b for automobile users. In Proceedings of
Infocom 04’, 2004.

[12] H. Qu and A. Labrinidis. Preference-aware query and
update scheduling in web-databases. In Proceedings of
the 23rd International Conference on Data
Engineering(ICDE07), 2007.

[13] D. Rajan, A. Sabharwal, and B. Aazhang. Power
efficient broadcast scheduling with delay deadlines. In
Proceedings of the First International Conference on
Broadband Networks (BROADNETS’04), 2004.

[14] C. Su and L. Tassiulas. Broadcast scheduling for
information distribution. In Proceeding of Infocom 97’,
1997.

[15] N. Vaidya and S. Hameed. Scheduling data broadcast
in asymemetric communication environments. In
Wireless Networks, volume 5, 1999.

[16] J. Wong. Broadcast delivery. In Proceeding of the
IEEE, pages 1566–1577, 1988.

[17] Y. Wu and G. Cao. Stretch-optimal scheduling for
on-demand data broadcasts. In Proceeding of the 10th
International Conference on Computer
Communications and Networks(ICCCN 01’), pages
500–504, 2001.

[18] J. Xu, X. Tang, and W. Lee. Time-critical on-demand
data broadcast: Algorithms, analysis, and
performance evaluation. IEEE Transactions on
Parallel and Distributed Systems, 17:3–14, 2006.

[19] L. Yin and G. Cao, “Supporting Cooperative Caching
in Ad Hoc Networks,” IEEE Transactions on Mobile
Computing, vol. 5, no. 1, January 2006.

[20] J. Zhao and G. Cao, “VADD: Vehicle-Assisted Data
Delivery in Vehicular Ad Hoc Networks,” in IEEE
Infocom 2006.

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

