

Chapter 5: Information Propagation Probability on Intersections in VANETs

Prof. Yuh-Shyan Chen

Department of Computer Science and Information Engineering National Taipei University

Information Propagation Probability on Intersections in VANETs

Andreas Xeros, Maria Andreou, Andreas Pitsillides

Vehicle-to-Vehicle Communications 2007 (V2VCOM 2007)

Environment

Erol A. Peko"z and Nitindra Joglekar, "Poisson traffic flow in a general feedback queue," Journal of Applied Probability, Volume 39, Number 3 (2002), 630-636

Information Propagation Probability

Probability of Information Transmission form h_{ij} to h_{jk} Directly $(p_{tr}^{\ h}ij^{h}jk)$

- p_e : a vehicle entering h_{jk} during time interval[0,y]
- p_c : veh_1 transmits information to the vehicle at h_{jk} directly

Probability of Information Transmission form h_{ij} to h_{jk} Directly $(p_{tr}^{\ h}ij^{h}jk)$

- Case 1: *veh*₁ has the information when it passes from point *R*
- Case 2: veh_1 passed point *R* without carrying the information and it got informed before reaching intersection I_i

Case 1: *veh*₁ has the information when it passes from point *R*

 p_e : a vehicle entering h_{ik} during time interval[0,y]

p_c : *veh*₁ transmits information to the vehicle at h_{jk} directly

p_c : veh_1 transmits information to the vehicle at h_{jk} directly

p_c : veh₁ transmits information to the vehicle at h_{ik} directly

The function distribution of X(t) $F_{X(t)}(d(t)) = \sum P[X(t) < d(t) | Z(\gamma) = z] * P[Z(\gamma) = z]$ z = 0 $P[X(t) \le d(t)|Z(\gamma) = z] =$ $1 - P[X(t) > d(t)|Z(\gamma) = z] =$ $X(t) = min(V'_i * (t - T_i)) \quad 1 - P[V' * (t - T) > d(t)]^z$ $p_c = \int^y F_{X(t)}(d(t))dt$

$$p_c = \int_0 F_{X(t)}(d(t))dt$$

Example of Catching Up Case

Transmission range = 250m

Case 2:

*veh*₁ passed point *R* without carrying the information and it got informed before reaching intersection I_i

Environment of Case 2

 p_e : a vehicle entering h_{ik} during time interval[0,y]

p_c : *veh*₁ transmits information to the vehicle at h_{jk} directly

p_c : veh_1 transmits information to the vehicle at h_{jk} directly

$$F_{Q(t,s)-X(t)}(0) = \int_0^r \sum_{z=0}^\infty P[Q(t,s) - X(t) > 0 | Z(\gamma) = z] * P[Z(\gamma) = z] * f_s(s) ds$$

$$p_{c} = \int_{0}^{y} F_{Q(t,s)-X(t)}(0)dt$$

Probability of Information Transmission form h_{ij} to h_{jk} Directly $(p_{tr}^{\ h}ij^{h}jk)$

- Combining case 1 and case 2 to calculation $p_{tr}^{h} i j^{h} j k$
- We need to find the probability for each case to happen separately
- Time gap distribution

pdf of time gap distribution between veh_1 and veh_2 $p_{\tau}(\tau) = \lambda e^{-\lambda \tau}$ The time gap between veh_1 and veh_2

PDF of time gap distribution between veh_1 and veh_2

$$P_{\tau}(\tau > T) = e^{-\lambda T}$$

M. Rudack, M. Meincke, M. Lott, "On the Dynamics of Ad Hoc Networks for Inter Vehicle Communications (IVC)," ICWN 2002

Probability of Information Transmission form h_{ij} to h_{jk} Directly $(p_{tr}^{\ h}ij^{h}jk)$

$$P_{cs_1} = P_{\tau}(\tau > \frac{r}{V_1}) = e^{-\lambda \frac{r}{V_1}}$$
$$P_{cs_2} = 1 - P_{cs_1}$$

$$p_{tr}^{h_{ij}h_{jk}} = P_{cs_1} * (p_e^{cs_1} + (1 - p_e^{cs_1}) * p_c^{cs_1}) + P_{cs_2} * (p_e^{cs_2} + (1 - p_e^{cs_2}) * p_c^{cs_2})$$

Probability of having the veh_1 driving into $h_{jk}(p_{dr}^{\ h_{ij}h_{jk}})$

Simulation

- Simulation on VISSIM
- Transmission range is 250m
- Speed range is 60~8

Simulation

Conclusions

- Provide a measure of the probability to propagate information on intersection roads
- Present a lower bound on the probability to propagate information between vehicles of two roads