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Abstract—We use a steerable beam directional antenna
mounted on a moving vehicle to localize roadside WiFi access
points (APs), located outdoors or inside buildings. Localizing APs
is an important step towards understanding the topologies and
network characteristics of large scale WiFi networks that are
deployed in a chaotic fashion in urban areas. The idea is to
estimate the angle of arrival of frames transmitted from the
AP using signal strength information on different directional
beams of the antenna – as the beam continuously rotates while
the vehicle is moving. This information together with the GPS
locations of the vehicle are used in a triangulation approach to
localize the APs. We show how this method must be extended
using a clustering approach to account for multi-path reflections
in cluttered environments. Our technique is completely passive
requiring minimum effort beyond driving the vehicle around
in the neighborhood where the APs need to be localized, and
is able to improve the localization accuracy by an order of
magnitude compared with trilateration approaches using omni-
directional antennas, and by a factor of two relative to other
known techniques using directional antennas.

I. I NTRODUCTION

Localization of the nodes in a WiFi (802.11) network using
radio-based information – such as signal strength, angle of
arrival (AoA) etc. – is an important problem. The simple
reason for this is that devices with WiFi interfaces are ubiq-
uitous and localization of wireless/mobile devices enables
interesting applications. GPS receivers are not availablewith
most wireless clients making radio-based localization theonly
viable option. Needless to mention that GPS may not always
work in indoors and in urban canyons.

In the most common approach for radio-based localization
for WiFi, location-tagged RF fingerprinting is used for sig-
nals from infrastructure nodes(i.e., access points or APs).
This location information must be independently determined.
RADAR [1] and many followup papers [2]–[4] have used
this basic method for indoor localization. On the other hand,
Intel’s Place Lab work [5] used a similar approach for outdoor
localization. In a different approach called VORBA [6], rotat-
ing directional antennas are used in APs and a combination
of signal strength and AoA information is used to localize
clients in indoor environments. VORBA does not require RF
fingerprints, but needs multiple APs with rotating directional
antennas. All these approaches have been primarily used for
localizing wireless client nodes, and not the infrastructure.

In this work, we consider the opposite problem – localiza-
tion of infrastructure nodes (APs). Our goal is to localize them
in a passive fashion, i.e., without their direct participations
in the localization process. There are tremendous application
for such localization. WiFi networks are growing in a viral

Fig. 1. Drive-by localization of roadside APs.

manner. Many urban regions have a high density of WiFi
APs – deployed in a “chaotic” fashion [7] in homes and
businesses, in campuses and hotspots, or as a part of a
metro or municipal WiFi effort [8]. There is little knowledge
about the nature of these networks, e.g., density, connectivity,
interference properties, etc. The first step in understanding
their nature is estimating locations of the APs. We expect that
at the minimum our effort will provide researchers significant
datasets for simulations and modeling purposes. We hope
that this will eventually lead to significant research as in
understanding Internet topology [9], [10] in wired networking
context. Other than datasets for research use, learning locations
of APs may reveal interesting social aspects. We will show
later the accuracy of our localization is good enough to
localize APs within the boundary of a typical house or even
an apartment. This can lead to interesting data sets for social
science – correlating census data (say, level of education or
home price) to Internet usage.1

While several war-driving databases are in existence [12]
[13], the location information therein is very primitive. The
database simply contains the locations where the APs are heard
with a sniffer. As we will show later, even with the most
sophisticated techniques this information can only provide
very rough location estimates, with errors in hundreds of
meters. Our goal here is to be able to improve such location
estimates byan order of magnitude.

In our approach, we exploit the MOBISTEER architecture

1We are assuming that having an WiFi AP at home means that residents
have broadband connection and use the Internet heavily. Note that we are
ignoring privacy aspects. Our technique simply sniffs WiFi frames from streets
and public places. This is no different than Google’s StreetView [11] that
takes pictures from streets.
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based on our recent work [14]. MOBISTEER uses a steerable
beam directional antenna with a WiFi (802.11b/g) client
node mounted on a moving car. The antenna coupled with
appropriate protocols has been used to improve vehicular
connectivity to roadside APs [14]. Here, we use MOBISTEER

to gather frames originating at roadside APs on different
directional beams to estimate the Angle of Arrival (AoA) of
the frames. For robustness reasons, our strategy requires that
many samples of AoA information be collected from different
locations. Thus a moving car is indeed needed so that many
such samples can be collected with relatively little effort. The
general idea is driving the car in the neighborhood where APs
need to be localized, and collecting GPS-tagged signal strength
information on different directional antenna beams for the
frames transmitted (e.g., beacons) by the APs. See Figure 1.
The approach is purely passive and based on “sniffing” alone;
APs are unaware of the localization effort. Because of the use
of a car, our work naturally targets outdoor use. However, the
APs can be anywhere – either indoor or outdoor. In fact, in
most of our experiments they are indeed indoor.

The rest of the paper is organized as follows. In Section II
we describe our experimental platform and data collection
methods. In Section III we describe our localization approach.
The performance results are presented in Section IV. We
follow it up with related work and conclusions.

II. EXPERIMENTAL PLATFORM AND SCENARIOS

A. Hardware Setup

Our directional antenna setup uses electronically steerable
Phocus Array antennas from Fidelity Comtech [15] for the 2.4
GHz band used in IEEE 802.11b/g. The Phocus Array antenna
system consists of eight elementphased arraysdriven by eight
individual T/R (transmit-receive) boards that receive radio
signals from the wireless card via an eight way RF splitter. The
phased arrays combine radio waves by introducing different
phase differences and gains in the eight arrays [16] [17]. A
T/R board is essentially a vector modulator with bi-directional
amplifier controlled by software. Various beam patterns are
possible by setting the phases and gains in different boards
differently.

The software control on the antenna to produce different
beam patterns is achieved via serial-line commands from an
embedded computer (a Soekris net4511 board [18]). The beam
steering latency has been optimized to 250µs [14]. On the
Soekris, we use a 802.11 a/b/g miniPCI card based on Atheros
[19] chipset with an external antenna interface. The Soekris
computer runs pebble Linux [20] with the Linux 2.4.26 kernel
and the widely usedmadwifi [21] device driver for the
802.11 interface.

While many beam patterns are possible using the phased
array, the manufacturer ships the antenna with 17 precomputed
patterns – one omnidirectional beam and 16 directional beams,
each with an approximately45◦ half-power beam-width and
low sidelobes. The directional gain is about 15dBi. Each direc-
tional beam is overlapping with the next beam and is rotated
by 22.5◦ with respect to the next, thus covering the360◦

(a) (b)

Fig. 2. The beam patterns for phocus array antenna: (a) omni-directional;
(b) two directional beams.

circle with 16 beam patterns. Figure 2 shows the manufacturer
provided beam patterns. We refer to the omni-directional beam
with beam index 0 and the 16 directional beams we use
with beam indices 1 to 16. Adjacent beams are numbered
successively. We use a USB-based Garmin [22] GPS receiver
inside the car that is connected to the embedded computer. Our
experiments with this GPS receiver show a median position
accuracy of about 5 meters. The entire hardware setup is called
a MOBISTEER node.

B. Software Setup

The madwifi driver allows creation of additional raw
virtual interface (ath0raw) for a physical wireless interface.
The virtual interface allows reception of all 802.11 frames
(control, management, data) as if in the monitor mode, while
the main interface can still operate in the ad hoc or infrastruc-
ture mode. We modified Kismet [23], a popular wireless packet
sniffer software tooptionally capture all packets received on
the raw virtual interface. Kismet communicates with the GPS
server, running as a daemon (gpsd), and stamps the current
time and GPS coordinates with each received frame from any
AP.

Each received frame (from APs) is also annotated with an
index for the current beam pattern on the antenna, orientation
of the car (more on this later) and the SNR (Signal to Noise
Ratio). The SNR for each received frame is obtained from the
radio-tap header appended by themadwifi driver for each
received frame. The AP’s identity (MAC address) is already
in the received frame. The tuple<AP, location, orientation,
beam, SNR> is logged onto the flash memory of the Soekris
computer. We also refer to this as ameasurement sample.
SNR is represented in dB, given by10 log(S/N), whereS
andN are signal power received and noise floor respectively.
In Atheros cards, the noise floorN is set at−95 dBm.

C. Experimental Scenarios

Figure 3 shows three representative environments in which
we did our experiments. It also shows the actual location of the
APs and the driving path of the MOBISTEER node. Figure 3(a)
is a large open empty parking lot with no surrounding building.
The AP is set up in the middle in open air. This scenario is used
to demonstrate the performance of our localization approach in
an uncluttered environment and to create a best case scenario.
This is representative of relatively rural or empty environment.
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(a) Parking lot (2 APs). (b) Apartment complex (17 APs).

(c) Office building (2 APs).

Fig. 3. Three experimental scenarios along with the AP locations and the
driving trajectories. The black stars are the locations of the APs. The black
curve is the trajectory followed by the MOBISTEER Node.

Figure 3(b) and 3(c) are complex environments where there
are several two-storied buildings and large trees in close prox-
imity. They are the graduate student apartment complex and
the computer science department building in our university,
respectively. The APs here are kept indoors as would be
normal in such environments. These are relatively challenging
scenarios for localization, as there are lots of possibilities of
reflections and shadowing. They are representatives of urban
homes and offices. The measurements reported here include
data collected from APs deployed in 21 different locations in
the three scenarios shown in Figure 3.

D. Data Collection

Ideally, we would like to have measurement samples for
each AP on all beams at as many points on the roadway around
the AP as possible. Samples on all beams let us estimate the
AoA – by comparing the received SNRs on all beams. In free
space or relatively uncluttered environment, the beam withthe
highest SNR would be the one pointing towards the AP. A little
variation of this also works well in cluttered environmentswith
reflections, which we will describe in the next section.

The complexity in data collection comes from the fact that
we have a single radio and single antenna system in the
MOBISTEER node. The radio operates on a given channel and
the antenna uses a given beam at a time. Thus, all channels
and beams need to be scanned. However, for each channel and
beam combination the system must hold for certain duration
T , whereT should be long enough to receive a frame from
all APs in range and also long enough so that channel and

beam switching latencies can be ignored. We have fixedT
to be 100 ms. This time is the default beacon period in
most APs and also much longer than the switching latencies.
SinceT is not insignificant, it is not possible for a moving
car to gather measurement samples on all beams exactly at
the same location. Our experience has shown that so long
as the measurement samples on all beams are within ‘close
proximity’, the errors introduced are not significant in our
technique. We have defined ‘close proximity’ as 5 m, which is
similar to the GPS error bound for the GPS receiver we have
used. We will discuss more about GPS errors in Section IV.

Still, the car must be driven very slowly. To see this,
consider that an entire scan on 16 beams take 1.6 s. Thus,
the car should drive maximum 5 m in 1.6 s, i.e., 11.25 km/hr.
Such slow driving may not always be practical. We propose
to achieve the same effect by driving multiple times on the
same route. This approach was also used in [14] to build up
an RF signature database, though the context and use of the
database were different.

One simple approach to reduce the number of runs in the
data collection process is to use multiple fixed directional
antennas oriented along different directions connected tomul-
tiple radios on the moving vehicle. This enables the vehicle
to receive frames from APs in all directions throughout the
drive.

To summarize, the idea is to drive the car at normal speed
appropriate for the roadway used. The drive is simply re-
peated multiple times such that enough samples are collected.
Samples are then clustered such that samples taken within
5 m from one another are assumed to be taken at the same
point P . P is assumed to be the centroid of the locations
of these samples that are in the cluster. For convenience we
will refer to an instance of this pointP as themeasurement
point. A larger number of samples naturally provide many such
measurement points along the roadway and provides better
accuracy for localizing roadside APs. Average SNR is used in
the computation when there are multiple samples clustered
on the same measurement point for the same beam. Here
also, larger number of samples provide better immunity from
outliers due to fading. Later in Section IV, we will provide an
analysis of sensitivity of our method to the number of samples
as number of samples is directly related to the measurement
effort.

To simplify the data collection process in the experimental
results reported here, we have used a cart pushed at slow
walking speed in some instances (scenarios (a) and (c) in
Figure 3), instead of using a real vehicle and multiple drives.
This enabled us to collect sufficient number of samples per
AP on a single “walk.” This also enabled us to utilize walking
paths and open areas in the university campus where driving
is not allowed. For the experiments in scenario (b) in Figure3,
we drove at a very slow speed (approx 10 mph) and repeated
the runs multiple times. About 40-60 measurement points are
used to localize each AP in the experiments reported here.
We used our own APs for the experiments and made them
broadcast UDP packets at 250 packets/sec. This let us “speed



4

A n g u l a r  E r r o r

S t r o n g e s t
b e a m

M e a s u r e m e n t
 p o i n t s

A P

A n g u l a r  E r r o r

S t r o n g e s t
b e a m

M e a s u r e m e n t
 p o i n t s

Z e r o  A n g u l a r  
E r r o r

A P

D i r e c t  s i g n a l
 t h r o u g h  w a l l

M e a s u r e m e n t  p o i n t s

A P

R e f l e c t e d
S i g n a l

S i g n i f i c a n t  
o b s t r u c t i o n
p r e v e n t i n g  

d i r e c t  s i g n a l

(a) (b) (c)

Fig. 4. (a) Angular error using center of directional beam. (b) Angular error considering beamwidth. (c) A scenario demonstrating reflection.

up” the experiments as we could get many samples on the
same beam for the same measurement point and used the
average SNR for each<beam,AP> combination. We used
the same channel for all the APs. This speeds up the data
collection process further as multiple channels need not be
scanned. Note that use of carts or UDP broadcast packets from
AP are only used to reduce measurement effort and does not
have any fundamental impact on the results.

E. Determining Orientation

Since the antenna is to be mounted on the car in a fixed
fashion, the orientation of the car (with respect to some abso-
lute direction, say magnetic North) also provides an orientation
of the antenna setup. This ensures that the absolute direction
of the directional beams can be determined by knowing the
car’s orientation. Orientation of the car can be determinedfrom
the headingcomputed from the GPS locations – a method
commonly used in navigation systems. This, however, may
not provide enough accuracy for quick turns in small spaces.
For better accuracy, a digital compass such as [24] could be
used.

In the experiments, we indeed used a compass – not digital,
but a regular compass with a magnetic needle. During the
walks for data collection, we manually and painstakingly
ensured that the antenna setup is always oriented in the same
direction. This means any beami always points to the same
direction. In the car experiments, GPS headings were used to
compute the orientation. We expect that use of digital compass
will simplify the data collection process much and will likely
provide better accuracy.

III. L OCALIZATION ALGORITHM

A. Preliminaries

Our approach hinges on estimating the AoA of frames from
a given AP at each measurement point. The AoA is estimated
by noting the average SNR for the frames from a given AP on
each directional beam for the same measurement point. The
directional beam providing the strongest average SNR (we will
call this thestrongest beam) is expected to point directly to the
AP discounting reflections. Thus, the AoA can be estimated by
determining the strongest beam and then using the orientation
information (Section II-E) to determine the absolute direction
of the strongest beam. (Unless mentioned otherwise, the beam
direction corresponds to the center of the beam.) Letα(i)
denote the absolute direction of the strongest beam at each
measurement point(xi, yi) along the drive.

Let us first assume that signal reflections are not present.
In this case, the AP can be localized at a point in the 2D
plane for which thesum-square of the angular errorfrom
all the strongest beam directions is minimized similar to the
approach used in [6]. See Figure 4(a). Two artifacts, however,
complicate this scenario. They are described below.

• Non-zero beamwidth:The beams have non-zero width
(about 45◦ between the half-power points on the main
lobe). Using the center of the beam for AoA calculations
may incur significant error; the non-zero beamwidth must
be accounted for. One way to account for this would
be to use angular error from the beam sides, i.e., the
‘half-power’ directions, and pick the minimum of these
two errors. In case the direction to the localized point
is contained within the beam width, then the error is
assumed zero. See Figure 4(b).

• Reflections:In most realistic scenarios, radio obstructions
and reflections would be present causing the strongest
beam point away from the AP. See Figure 4(c). This phe-
nomenon was quite evident in the measurements we did
in [14] in cluttered environments (same as Figure 3(b)).

B. Understanding and Modeling Reflections

To understand the impact of reflections, we use Figures 5(a)
and (b) to show the measurement points (‘+’ symbols) and the
direction of the strongest beam from each measurement point
(arrows). For simplicity we are ignoring the beamwidth issue
for now and using the center of the beam for direction. The
actual location of the access point is also shown (‘×’ symbols).
These figures correspond to measurements for the empty
parking lot (Figure 3(a)) and office building (Figure 3(c)),as
described in Section II-C. To complement these figures, we
also show the CDF of angular error of the strongest beam from
the actual direction towards the AP from each measurement
point (Figures 5 (c)).

Note that in the parking lot scenario most arrows are
pointing roughly towards the AP as expected. However, the
behavior is quite different in the office building scenario.Most
of the arrows are pointing in a different direction, presumably
due to reflections. Figure 5 (c) qualitatively demonstratesthis.
Note that for the parking lot scenario, the error CDF is rising
sharply, and for the office building scenario, the rise is quite
gradual denoting significant errors. The median angular error
for the parking lot is about15◦ (small) and for the office
building is about55◦ (unacceptably large). Note also that the
90-percentile error for parking lot is43◦ — similar to the
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Fig. 5. (a), (b): AP location and directions of the strongestbeams in two scenarios demonstrating the impact of reflections.(c): CDF of the angular error
of the strongest beam from the actual direction towards the AP in two scenarios.

beamwidth of the antenna, while the 90-percentile error for
office building is again very large (125◦).

This study indicates that straight-forward approaches to
minimize the sum-square of angular errors [6] using the
estimated AoA values can give rise to significant errors in
cluttered environments where the strongest signal reachesthe
MOBISTEER node after one or more reflections. Since this
situation will be the common case for roadside APs, modeling
reflections is important.

An interesting observation in Figure 5(b) is that while
arrows are all pointing to different directions, there seems
to be a clustering effect. The arrows are not pointing to
random directions but towards one of a handful of possible
directions. This is as if each arrow is pointing towards either
the real AP or one of its images arising out of presence of
reflections. The complexity of modeling reflections now is
that there is no knowledge of the number and locations of
reflective surfaces that give rise to these images. Thus, there
is no knowledge of number of images to look for, and the real
AP is indistinguishable from any of its image.

We will approach this problem in the following fashion.

1) Use the well-knownk-means algorithm[25] to group the
measurement points intok clusters such that each group
of measurement points have the strongest beam pointing
(approximately) towards the same location. Thesek
locations include the real location and the images of
the AP. Since the number of reflective surfaces are not
knowna priori, we use the Anderson-Darling normality
test [26] to learn the value ofk while clustering (more
on this in section III-E).

2) Determine which one of thesek images is the real AP.
We show that it is impossible to determine in a general
case, but heuristics can be used quite successfully.

We describe the details in the following subsection.

C. Modeling Reflections byk-Means Clustering

Given the set of tuples< xi, yi, α(i) > for each mea-
surement point along the drive, the main idea is to cluster
the measurement points intok clusters and findk locations
which minimize theaggregate of intra-cluster sum-square of

angular errors. The angular error is the error considering the
beamwidth and is determined as described in Section III-A

In addition, we use weights when minimizing the sum-
square of angular errors. The intuition for this is as fol-
lows. Since the strongest beam is the one that is important
for estimating AoA, we should make distinctions between
measurement points with high SNR on the strongest beam
compared to those with low SNR on the strongest beam.
We use the average SNR (in dB) of packets received in
the strongest beam as the weighting function. This intutively
puts emphasis on measurement points close to the actual AP
location or on those received on a direct beam.

More formally, let wi be the weights assigned to each
measurement point. Letαl(i) and αr(i) denote the left and
right half-power directions of a beam with absolute angle
α(i). We seek to find ak-clustering of the measurement
points into k clusters (S1, ..., Sk) and obtain k locations
Li = (Xi, Yi), 1 ≤ i ≤ k, that minimize the following
objective function:
∑k

i=1

∑
j∈Si

wj · min{[αl(j) − arctan(Yi − yj ,Xi − xj)]
2,

[αr(j) − arctan(Yi − yj ,Xi − xj)]
2}

Note that the quantity within{.} is the angular error using
the non-zero beamwidth idea. Since the angular error can be
between 0 andπ, if the quantity within{.} is larger thanπ,
it is subtracted from2π.

The k-means clustering algorithm works in the following
way. For any given value ofk, assumeL1, . . . , Lk are thek
locations of the AP (i.e., real and the images) to be deter-
mined. Initially,Li’s are chosen randomly within the ‘feasible
region’.2 Each measurement point is mapped to someLi that
provides the minimum angular error for this measurement
point. Thus, the measurement points are now clustered into
k clusters. The algorithm then repeats the following two steps
until convergence.

• Compute a point for each cluster, denoted byCi, in the
feasible region that minimizes the weighted intra-cluster

2In our experiments, we defined the feasible region as a square of side
600m around the measurement points. We assume the transmission range of
the AP is not more than 300m and thus the possible location of the AP should
be within a region of radius 300m from the measurement points.
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sum-square of the angular errors within each cluster.
• Ci’s now become newLi’s. Re-cluster by mapping each

measurement point to theLi that provides the minimum
angular error as before.

Convergence is obtained when the clustering does not change.
Now we havek locations,L1, . . . , Lk, which represent the
images of the AP including the real location. The next step is
to choose one of thesek points as the estimated location of
the AP.

D. Choosing Real AP Location fromk Images

The k-means clustering gives a set of possible locations of
the AP, with one of them being the true location and the rest
of them reflected images. However, it is hard to distinguish
the true location from the image. A simple example is shown
as in Figure 6. In the left figure, two measurement pointsA,B
receive signal from the AP. The signal from AP toB is direct
but the signal toA was reflected once. Thus at locationA
the strongest beam to the image of AP. Notice that in this
figure everything is symmetric, thus we can swap the AP and
its image and have another feasible configuration (right). In
other words, given a set ofk possible locations including the
AP and its images, and the way the strongest beam at each
measurement point points to these locations, it is impossible
to tell the true location of the AP apart from the images,
as the same information may admit two (or more) feasible
configurations.
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Fig. 6. It is impossible to tell the true location of the AP apart from
the images, as the same information may admit two (or more) feasible
configurations.

With this difficulty in mind, we use a heuristic to choose the
true AP location. Notice that if the strongest beam at a pointP
points to an image, then the image isalwaysfarther away from
P than the true location. Thus from a particular measurement
point’s view, the true location must be closer than any of
the images. Based on this observation, we propose a simple
heuristic that works very well in practice. Each measurement
point ranks thek images based on their distances to itself. The
nearest image is ranked 1st and the next is ranked 2nd and
so on. We compute the weighted (weights beingwj ’s defined
before) sum of the ranks for each image and choose the image
with the least value of the weighted sum. In our experiments
this always gives the location closest to the true AP location.

E. Learningk for Clustering

One remaining issue is to determine the right value ofk
to be used in thek-means clustering algorithm. We need
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Fig. 7. Relationship between distance and RSS in (a) parkinglot (b)
apartment complex.

some statistical means to estimatek from the measurement
data as there is noa priori knowledge of number of images.
Intuitively, we would like the measurement points to be
clustered nicely such that in each cluster the strongest beams
all point to the same locationLi. In other words, the angular
error within one cluster should beuni-modal. Thus, we use the
idea from the G-means algorithm [27] and learn the number
of clusters,k, by checking whether the angular error values
in each cluster follows a Gaussian distribution.

We start with the value ofk=1 and successively increment
k, performing ak-means clustering in each step as described
before. After clustering, we check whether the error values
in each cluster satisfy a statistical test for normality. Ifthey
do, we stop the procedure; otherwise, we incrementk and
repeat. We have used the standard Anderson-Darling normality
test [26] [28] with a significance level3 of 1% to test for
normality.

IV. PERFORMANCEEVALUATION

In this section, we present a detailed performance evaluation
of our Drive-by Localization approach (DrivebyLoc) using
measurements from the 21 APs in three environments as
shown in Figure 3. The main comparison points are (i) a
trilateration approach using distance information [29] esti-
mated using from signal strength information (SNR) using
omni-directional antenna,4 and (ii) VORBA [6], a localization
approach using directional antenna and AoA information. We
also study and quantify the effect of several factors that impact
the performance of our system.

A. Benefit of Using Directional Antennas and AOA

In Figure 9 (a), we show the CDF of the localization errors
for DrivebyLoc and the trilateration approach for the 21 cases
studied. The trilateration approach fundamentally depends on
deriving distance estimates from the received signal strength
(RSS). RSS is derived from SNR assuming constant noise. A
simple propagation path loss modeling approach was used to
infer distance from RSS following the method used in [30].
The idea is to assume exponential decay of RSS with distance.
Thus, RSS (in dBm) should have a linear relationship with
the log of distance.<RSS, distance> tuples are collected in

3Significance level is the chance of incorrectly judging a setof values to
be not Gaussian.

4The same antenna with omni-directional beam is used for this study.
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Fig. 8. Comparison of DrivebyLoc and VORBA.

the data collection phaseassumingthat the AP locations are
known. This provides the scatterplot in Figure 7. A linear
regression (shown) provides the necessary path loss model to
be used to estimate distance from RSS. Note that (i) theR2

value of the regression is not high; and (ii) the parking lot
scenario provides a relatively more accurate modeling (higher
R2). The latter is likely due to lesser reflections and shadowing
problems.

Figure 9 (a) clearly shows that DrivebyLoc is about anorder
of magnitudebetter than trilateration. The median localization
error in DrivebyLoc is about 15 m, while it is about 128 m
in trilateration. In fact, the maximum error in DrivebyLoc is
less than 30 m. This shows that it can localize APs within
the accuracy of individual homes even in a very cluttered
environment.

B. Benefit of Modeling Reflection Using Clustering

We now study the benefit of modeling reflection using
the k-means clustering idea and also of modeling non-zero
beamwidth. For this purpose, we compare our results with
those of VORBA [6]. In VORBA a similar approach is taken,
except that a) signal reflections and b) non-zero beamwidth
are not modeled and c) no weighting using SNR is used.

Figure 8 shows the localization errors obtained using three
approaches in each of our 21 experiments categorized by the
value ofk learned using the Anderson-Darling normality test.
For DrivebyLoc we show the performance with and without
modeling of non-zero beamwidth as discussed in Section III-A.
Note that the same results for DrivebyLoc with beamwidth
modeling was shown before in Figure 9(a) in CDF form.

Note that all three schemes perform almost similarly when
K = 1. VORBA’s performance worsens for largerK. Some
very large errors are observed for VORBAK = 4 relative to to
DrivebyLoc. This indicates the modeling reflections is critical
for accurate localization. The impact of modeling beamwidth
is usually small and in general it is beneficial, though a few
outliers are indeed noticed. But overall it should be recom-
mended that DrivebyLoc be used with modeling beamwidth.
Note also that DrivebyLoc’s performance with increasingK
is relatively stable compared with VORBA. Overall it can be
concluded that out of the three differences (see above) between
DrivebyLoc and VORBA, modeling reflections has the most
impact. Also, overall with the entire data set the median error

for DrivebyLoc is about 15 m, while for VORBA it is about
30 m.

For the curious reader, we make a note here which scenarios
these 21 sets of experiments correspond to. Note the labels
(a) and (c) on top of some of the columns. These correspond
to scenarios Figure 3(a) and (c). The rest correspond to the
scenario in Figure 3(b). Thus, as expected all schemes get the
best results in the parking lot.

C. Impact of GPS Accuracy

As we take measurements while moving in a car, the
location of a measurement point is obtained through a GPS
unit. GPS devices are known to have errors [31]. In this
section, we study the impact of GPS error in our localization
approach. In order to quantify the effect of GPS error, we
did one experiment in an open parking lot as shown in
Figure 3(a) by manually measuring the distance between
pairs of measurement points and findingabsolute coordinates
for each point. For this purpose, we used the cart setup
as mentioned in Section II-D instead of a car. We moved
the cart and stopped at fixed measured distances and took
measurements on all directional beams. The dotted lines in
Figure 3(a) show the points where the measurements were
taken. We also noted the GPS coordinates at each measurement
point. The localization error for this particular experiment
using the manually measured absolute coordinates is around
12.6 m while the localization error using the GPS coordinates
is around 16.4 m. This shows that the GPS errors indeed
worsen the performance of our localization approach. To get
a better insight about the GPS accuracy, we show the CDF
of GPS errors for this particular experiment in Figure 9 (b).
The GPS error is computed by finding the difference between
actual distance between two points and the distance computed
using the GPS coordinates of the two points. The median
GPS error is about 1.25 m and this causes an increase in our
localization error by about 4 m.

The GPS error could be higher in a cluttered environment
with buildings and trees blocking the GPS signals from
the satellites. To understand this better, we repeated similar
GPS error measurements for the office building scenario. As
expected, the errors were higher (median error about 5.5 m)
Figure 9 (b), shows the CDF of GPS errors in these two sce-
narios. This error is quite comparable to the errors DrivebyLoc
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has in the same scenario (about 20 m). It remains unclear how
the GPS errors are contributing to our localization errors.But
given the parking lot experience above, the results presented
in Figure 8 likely underestimates DrivebyLoc’s performance.

D. Impact of Car Speed

As mentioned in Section II-D, the number of measurement
samples could impact the accuracy of DrivebyLoc. The num-
ber of samples is inversely proportional to the car speed and
directly proportional to the number of runs. Recall that in our
data collection approach we either used a car with slow drive
(10 mph) or used a cart to walk. Also, in order to ’speed up’
the experiments we had the APs broadcast UDP packets at
250 packets/sec which might happen in practise. We are now
interested in evaluating what would happen if the car is driven
at a more normal speed and APs do not transmit any frame
other than beacons at 100ms intervals. We use our existing data
to ‘simulate’ data collection at different speeds and then repeat
it to simulate multiple runs. To do this simulation experiment,
the existing data is laid out on an imaginary 2D map as points,
with each point as if ‘lit up’ at 100 ms intervals to simulate
the corresponding AP beacons. An imaginary car is driven on
the same roadway with slightly randomly varying speed (to
simulate reality) about an average. Any point lit up within
5 m from the current car location is counted as measurement
at the car location. This can be repeated to simulate multiple
drives.

In Figure 9 (c), we show the mean localization errors for
the 17 experiments in the apartment complex scenario along
with the 95% confidence intervals. Two different speeds and
multiple drives are shown. As expected, more runs and slower
speeds provide better mean localization error and smaller con-
fidence intervals. As discussed in Section II-D, use of multiple
directional antennas and multiple radios on the moving vehicle
would help to reduce the number of runs significantly.

V. RELATED WORK

RADAR [1] is one of the first systems to do indoor localiza-
tion of WiFi clients. The key idea is to do an RF fingerprinting
a priori to collect signal strength values from different APs
tagged with location information. When the wireless client
needs to be localized, it uses the current signal strength values
it receives from different APs and do a lookup on the RF
fingerprints. There are several follow up works similar to
RADAR [2]–[4]. In particular, Ladd et al [2] improve the
accuracy of indoor localization from about 10 m by RADAR to
within 1 m by using probabilistic inference of positions from
noisy signal information. Using a similar idea, Intel’s Place
lab work [5] localize wireless clients in outdoor settings.All
these ideas suffer from the problem of carefully conducting
RF fingerprinting. Also in these works, the emphasis is on
localizing WiFi clients unlike our approach.

Use of directional antennas for localization is not new.
VORBA [6], one of the significant work in AoA based indoor
WiFi localization uses WiFi APs equipped with a rotating

directional antenna and estimates AoA information from pack-
ets transmitted from clients and uses a simple triangulation
approach to find the position of the wireless clients. Our
approach compared to VORBA is more robust to AoA in-
formation suffering from reflections in cluttered environments
that are representative of most urban WiFi deployments.

There have been approaches for indoor localization using
other mediums such as ultra sounds, infrared, optical waves
ets. Active Badge [32] is an indoor localization system that
employs infrared medium. Each user is given an infrared badge
and can be localized by IR stations that read the badges. Active
Bat [33] uses a similar idea but employs ultrasound medium
and has extremely high accuracy in the order of centimeters.
The Cricket [34] system from MIT is another indoor posi-
tioning system that uses ultrasound combined with RF. It uses
several beacons that transmit ultrasound waves deployed in
the ceiling of each room in the building. The mobile nodes
receiving these waves infer the range and localize themselves.
In [35], Nasipuri and El Najjar propose an angle based indoor
localization system employing optical waves. They use three
rotating optical beacon signal generators that generate regu-
lar beacons and wireless sensor nodes equipped with photo
sensors determine their locations from the estimated angular
separations between the optical sources. This idea is somewhat
related our approach in the sense that they also use directional
beams and angle information.

Finally, localization in multihop adhoc and sensor networks
has been studied in a number of works [29], [36]–[39] and they
differ from each other depending on the type of information
used for localization such as angles, ranges and connectivity.
The idea is to come up with a consistent embedding of the
multihop network in either 2D or 3D plane.

VI. CONCLUSIONS

In this paper, we have proposed and tested with abundant
experiments a system with directional antennas for localizing
roadside WiFi access points, by simply driving though the
neighborhood where the APs need to be localized. The power
of the technique is its complete passive nature. It also does
not depend on any prior collection of RF fingerprinting data.
While similar approaches have been investigated before [6],
our major contribution is identifying that signal reflections
can cause significant localization errors and then developing
a clustering method to solve this problem. The idea is to
recognizea priori that there could be images of the AP, and
the real AP might be indistinguishable from the images. Thus,
we localize these – possibly multiple – images and then use a
heuristic to identify the real one among the set of images. The
method has demonstrated very satisfactory localization accu-
racies even in complex environments, compared with existing
approaches with omni-directional or directional antennas. In
spite of using the toughest scenarios for localization, the
localization errors are roughly between 10-30 m in spite of
the fact many of our APs were indoors. This is very good
compared to the localization error observed in Intel Place
Lab outdoor localization effort [5], where themedianerror is
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Fig. 9. (a) Localization errors for DrivebyLoc and trilateration.(b) CDF of the GPS errors in two scenarios. (c) Impact ofspeed and number of runs on
localization error.

between 13-40 m in spite of very careful radio fingerprinting
of the environment. This is an impressive performance given
that we observed up to about 7.5 m of GPS error in similar
environments.

While the work so far is limited to 2D, this can be extended
to 3D using a combination of antennas so that directivity is
on both horizontal and vertical axes can be obtained. We will
consider this in the future. We expect that an important fallout
of our work will be the creation of a very accurate ‘WiFi map’
of urban APs with a minimum effort, and eventually motivate
novel applications.
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