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Abstract—We use a steerable beam directional antenna
mounted on a moving vehicle to localize roadside WiFi access
points (APs), located outdoors or inside buildings. Localizing APs
is an important step towards understanding the topologies and
network characteristics of large scale WiFi networks that are
deployed in a chaotic fashion in urban areas. The idea is to
estimate the angle of arrival of frames transmitted from the
AP using signal strength information on different directional
beams of the antenna — as the beam continuously rotates while
the vehicle is moving. This information together with the GPS
locations of the vehicle are used in a triangulation approach to
localize the APs. We show how this method must be extended
using a clustering approach to account for multi-path reflections
in cluttered environments. Our technique is completely passive
requiring minimum effort beyond driving the vehicle around
in the neighborhood where the APs need to be localized, and Fig. 1.
is able to improve the localization accuracy by an order of
magnitude compared with trilateration approaches using omni- . . . -
directional antennas, and by a factor of two relative to other Manner. Many urban regions have a high density of WiFi

Drive-by localization of roadside APs.

known techniques using directional antennas. APs — deployed in a “chaotic” fashion [7] in homes and
businesses, in campuses and hotspots, or as a part of a
|. INTRODUCTION metro or municipal WiFi effort [8]. There is little knowledg

Localization of the nodes in a WiFi (802.11) network usingbout the nature of these networks, e.g., density, comvitgcti
radio-based information — such as signal strength, angle ipterference properties, etc. The first step in understandi
arrival (AoA) etc. — is an important problem. The simpldheir nature is estimating locations of the APs. We expeat th
reason for this is that devices with WiFi interfaces are ubidt the minimum our effort will provide researchers significa
uitous and localization of wireless/mobile devices emmbléatasets for simulations and modeling purposes. We hope
interesting applications. GPS receivers are not availelifle that this will eventually lead to significant research as in
most wireless clients making radio-based localizationahly ~understanding Internet topology [9], [10] in wired netwioik
viable option. Needless to mention that GPS may not alwaggntext. Other than datasets for research use, learniagjdoos
work in indoors and in urban canyons. of APs may reveal interesting social aspects. We will show

In the most common approach for radio-based localizatid@ter the accuracy of our localization is good enough to
for WiFi, location-tagged RF fingerprinting is used for siglocalize APs within the boundary of a typical house or even
nals from infrastructure nodegi.e., access points or APs).an apartment. This can lead to interesting data sets foalsoci
This location information must be independently determiinescience — correlating census data (say, level of education o
RADAR [1] and many followup papers [2]-[4] have usediome price) to Internet usage.
this basic method for indoor localization. On the other hand While several war-driving databases are in existence [12]
Intel's Place Lab work [5] used a similar approach for outdod13], the location information therein is very primitive h&
localization. In a different approach called VORBA [6],abt database simply contains the locations where the APs ard hea
ing directional antennas are used in APs and a combinatioith a sniffer. As we will show later, even with the most
of signal strength and AoA information is used to localizeophisticated techniques this information can only previd
clients in indoor environments. VORBA does not require RFery rough location estimates, with errors in hundreds of
fingerprints, but needs multiple APs with rotating direnib meters. Our goal here is to be able to improve such location
antennas. All these approaches have been primarily used getimates byan order of magnitude
localizing wireless client nodes, and not the infrastreetu In our approach, we exploit the &BISTEER architecture

In this work, we consider the opposite problem — localiza-
tion of infrastructure nodes (APsPur goal is to localize them  'we are assuming that having an WiFi AP at home means that resident
in a passive fashion, i.e., without their direct participas _have_broadband connection and use th_e Interngt heg\{il)e Nhatt we are
. . . . ignoring privacy aspects. Our technique simply sniffs Wihfies from streets
in the localization process. There are tremendous a-pmm:""tand public places. This is no different than Google’s Sthdetv [11] that
for such localization. WiFi networks are growing in a viratakes pictures from streets.



based on our recent work [14]. d&BISTEER uses a steerable
beam directional antenna with a WiFi (802.11b/g) client
node mounted on a moving car. The antenna coupled with
appropriate protocols has been used to improve vehicular
connectivity to roadside APs [14]. Here, we us@©RSTEER

to gather frames originating at roadside APs on different
directional beams to estimate the Angle of Arrival (AcA) of
the frames. For robustness reasons, our strategy reghaes t
many samples of AoA information be collected from different
locations. Thus a moving car is indeed needed so that many @ (b)

such samples can be collected with relatively little effdtte Fig. 2. The beam patterns for phocus array antenna: (a) oiregtibnal;
general idea is driving the car in the neighborhood where AB¥ Wwo directional beams.

need to be localized, and collecting GPS-tagged signaigtine circle with 16 beam patterns. Figure 2 shows the manufacture

:Enformattmn on.t:jlgferent célrectlonal banttﬁnn:Pbegms ;c_)r t rovided beam patterns. We refer to the omni-directionahibe
rames transmitted (e.g., beacons) by the S. €€ Fgur ith beam index 0 and the 16 directional beams we use

B e ari g todith beam indces 1 10 16. Adacent besms are numbered
of a car, our work naturally targets outdoo.r use. However t§ugcesswely. we use a USB-based Garmin [22] GPS receiver
APS caﬁ be anywhere — either indoor or outdtlnor n fac:[ l S|de_ the car that |s_connected to_ the embedded C(_)mputer. _Ou

' ' &perlments with this GPS receiver show a median position

most of our expenments_ they are indeed indoor. . curacy of about 5 meters. The entire hardware setup &xcall
The rest of the paper is organized as follows. In Section MOBISTEER node

we describe our experimental platform and data collection
methods. In Section Il we describe our localization apphoa B. Software Setup
The performance results are presented in Section IV. WeThe pmadwi fi driver allows creation of additional raw
follow it up with related work and conclusions. virtual interface @t hor aw) for a physical wireless interface.
Il. EXPERIMENTAL PLATFORM AND SCENARIOS The virtual interface allows recgption of all 802.11 frame_s
(control, management, data) as if in the monitor mode, while
A. Hardware Setup S . . :
o . the main interface can still operate in the ad hoc or infuastr
Our directional antenna setup uses electronically stéerafre mode. We modified Kismet [23], a popular wireless packet
Phocus Array antennas from Fidelity Comtech [15] for the 2&hiffer software tooptionally capture all packets received on
GHz band used in IEEE 802.11b/g. The Phocus Array anteng raw virtual interface. Kismet communicates with the GPS
system consists of eight elemeitased arraysiriven by eight server, running as a daemogpisd), and stamps the current
individual T/R (transmit-receive) boards that receiveioadtime and GPS coordinates with each received frame from any
signals from the wireless card via an eight way RF splittee T aop.
phased arrays combine radio waves by introducing differentgach received frame (from APs) is also annotated with an
phase differences and gains in the eight arrays [16] [17]. jfidex for the current beam pattern on the antenna, orientati
T/R board is essentially a vector modulator with bi-direcll  of the car (more on this later) and the SNR (Signal to Noise
amplifier controlled by software. Various beam patterns apgatio). The SNR for each received frame is obtained from the
possible by setting the phases and gains in different boagggio-tap header appended by timedwi fi driver for each
differently. _ received frame. The AP’s identity (MAC address) is already
The software control on the antenna to produce differepf the received frame. The tupleAP, location, orientation,
beam patterns is achieved via serial-line commands from g8am, SNR is logged onto the flash memory of the Soekris
embedded computer (a Soekris net4511 board [18]). The beg#inputer. We also refer to this asrmaeasurement sample
steering latency has been optimized to 28(14]. On the gSNR is represented in dB, given by log(S/N), where S

Soekris, we use a 802.11 a/b/g miniPCI card based on Athegegy v are signal power received and noise floor respectively.
[19] chipset with an external antenna interface. The Seekih Atheros cards, the noise flod¥ is set at—95 dBm.

computer runs pebble Linux [20] with the Linux 2.4.26 kernel ) )

and the widely usedradwi fi [21] device driver for the C. Experimental Scenarios

802.11 interface. Figure 3 shows three representative environments in which
While many beam patterns are possible using the phasee did our experiments. It also shows the actual locatiomef t

array, the manufacturer ships the antenna with 17 precadpuf\Ps and the driving path of the &®BISTEER node. Figure 3(a)

patterns — one omnidirectional beam and 16 directional kearis a large open empty parking lot with no surrounding buidin

each with an approximately5° half-power beam-width and The AP is set up in the middle in open air. This scenario is used

low sidelobes. The directional gain is about 15dBi. Eackdir to demonstrate the performance of our localization appraac

tional beam is overlapping with the next beam and is rotatesh uncluttered environment and to create a best case szenari

by 22.5° with respect to the next, thus covering tB60° This is representative of relatively rural or empty envirant.




beam switching latencies can be ignored. We have fiked
to be 100 ms. This time is the default beacon period in
most APs and also much longer than the switching latencies.
Since T is not insignificant, it is not possible for a moving
car to gather measurement samples on all beams exactly at
the same location. Our experience has shown that so long
as the measurement samples on all beams are within ‘close
proximity’, the errors introduced are not significant in our
technigue. We have defined ‘close proximity’ as 5 m, which is
similar to the GPS error bound for the GPS receiver we have
used. We will discuss more about GPS errors in Section V.
Still, the car must be driven very slowly. To see this,
consider that an entire scan on 16 beams take 1.6 s. Thus,
the car should drive maximum 5 min 1.6 s, i.e., 11.25 km/hr.
Such slow driving may not always be practical. We propose
to achieve the same effect by driving multiple times on the
same route. This approach was also used in [14] to build up
an RF signature database, though the context and use of the
database were different.
One simple approach to reduce the number of runs in the
. data collection process is to use multiple fixed directional
y ' € / antennas oriented along different directions connectedub
(c) Office building (2 APs). tiple radios on the moving vehicle. This enables the vehicle
Fig. 3. Three experimental scenarios along with the AP looatiand the tO. receive frames from APs in all directions throughout the
driving trajectories. The black stars are the locationshef APs. The black drive.
curve is the trajectory followed by the &BISTEER Node. To summarize, the idea is to drive the car at normal speed
appropriate for the roadway used. The drive is simply re-
Figure 3(b) and 3(c) are complex environments where thesgated multiple times such that enough samples are callecte
are several two-storied buildings and large trees in closg-p Samples are then clustered such that samples taken within
imity. They are the graduate student apartment complex andn from one another are assumed to be taken at the same
the computer science department building in our universityoint P. P is assumed to be the centroid of the locations
respectively. The APs here are kept indoors as would Bethese samples that are in the cluster. For convenience we
normal in such environments. These are relatively chaileng will refer to an instance of this poinP as themeasurement
scenarios for localization, as there are lots of pOSSMIDf point. A larger number of samples naturally provide many such
reflections and shadowing. They are representatives ohurgeasurement points along the roadway and provides better
homes and offices. The measurements reported here inclggeuracy for localizing roadside APs. Average SNR is used in
data collected from APs deployed in 21 different locatiams ihe computation when there are multiple samples clustered
the three scenarios shown in Figure 3. on the same measurement point for the same beam. Here
also, larger number of samples provide better immunity from
outliers due to fading. Later in Section IV, we will provida a
Ideally, we would like to have measurement samples fanalysis of sensitivity of our method to the number of sasiple
each AP on all beams at as many points on the roadway aro@sdnumber of samples is directly related to the measurement
the AP as possible. Samples on all beams let us estimate dfffert.
AO0A — by comparing the received SNRs on all beams. In free To simplify the data collection process in the experimental
space or relatively uncluttered environment, the beam thigh results reported here, we have used a cart pushed at slow
highest SNR would be the one pointing towards the AP. A littkwalking speed in some instances (scenarios (a) and (c) in
variation of this also works well in cluttered environmewith  Figure 3), instead of using a real vehicle and multiple drive
reflections, which we will describe in the next section. This enabled us to collect sufficient number of samples per
The complexity in data collection comes from the fact tha&P on a single “walk.” This also enabled us to utilize walking
we have a single radio and single antenna system in tbaths and open areas in the university campus where driving
MoBISTEER hode. The radio operates on a given channel aiglnot allowed. For the experiments in scenario (b) in Figyre
the antenna uses a given beam at a time. Thus, all channe¢ésdrove at a very slow speed (approx 10 mph) and repeated
and beams need to be scanned. However, for each channeltaedruns multiple times. About 40-60 measurement points are
beam combination the system must hold for certain duratiaised to localize each AP in the experiments reported here.
T, whereT' should be long enough to receive a frame froriMe used our own APs for the experiments and made them
all APs in range and also long enough so that channel albibadcast UDP packets at 250 packets/sec. This let us “speed

D. Data Collection
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points

up” the experiments as we could get many samples on theLet us first assume that signal reflections are not present.
same beam for the same measurement point and used Ith¢his case, the AP can be localized at a point in the 2D
average SNR for eackcbeam,AR- combination. We used plane for which thesum-square of the angular errdirom

the same channel for all the APs. This speeds up the daththe strongest beam directions is minimized similar te th
collection process further as multiple channels need not Bpproach used in [6]. See Figure 4(a). Two artifacts, howeve
scanned. Note that use of carts or UDP broadcast packets froomplicate this scenario. They are described below.

AP are only used to reduce measurement effort and does nof Non-zero beamwidthThe beams have non-zero width

have any fundamental impact on the results. (about45° between the half-power points on the main
lobe). Using the center of the beam for AoA calculations
may incur significant error; the non-zero beamwidth must
Since the antenna is to be mounted on the car in a fixed pe accounted for. One way to account for this would
fashion, the orientation of the car (with respect to som@abs  pe to use angular error from the beam sides, i.e., the
lute direction, say magnetic North) also provides an oggob ‘half-power’ directions, and pick the minimum of these
of the antenna setup. This ensures that the absolute dinecti o errors. In case the direction to the localized point
of the directional beams can be determined by knowing the s contained within the beam width, then the error is
car’s orientation. Orientation of the car can be determineach assumed zero. See Figure 4(b).
the headingcomputed from the GPS locations — a method , Reflectionsin most realistic scenarios, radio obstructions
commonly used in navigation systems. This, however, may and reflections would be present causing the strongest
not provide enough accuracy for quick turns in small spaces. peam point away from the AP. See Figure 4(c). This phe-
For better accuracy, a digital compass such as [24] could be nomenon was quite evident in the measurements we did

used. in [14] in cluttered environments (same as Figure 3(b)).
In the experiments, we indeed used a compass — not digital,

but a regular compass with a magnetic needle. During tBe Understanding and Modeling Reflections

walks for data collection, we manually and painstakingly 14 ynderstand the impact of reflections, we use Figures 5(a)
e_nsur_ed that_ the antenna setup is always qr|ented in the sajpg (b) to show the measurement points (‘+' symbols) and the
direction. This means any beaimalways points to the same girecion of the strongest beam from each measurement point
direction. In the car experiments, GPS headings were useqgows). For simplicity we are ignoring the beamwidth issu
compute the orientation. We expect that use of digital c®8pgq how and using the center of the beam for direction. The
will §imp|ify the data collection process much and will llit¢  5t,al location of the access point is also showi §ymbols).
provide better accuracy. These figures correspond to measurements for the empty
1. L OCALIZATION ALGORITHM parkiqg Iot_(Figurg 3(a)) and office building (Figure_ 3(cAx
described in Section II-C. To complement these figures, we
also show the CDF of angular error of the strongest beam from
Our approach hinges on estimating the AoA of frames frothe actual direction towards the AP from each measurement
a given AP at each measurement point. The AoA is estimatedint (Figures 5 (c)).
by noting the average SNR for the frames from a given AP onNote that in the parking lot scenario most arrows are
each directional beam for the same measurement point. Tg@nting roughly towards the AP as expected. However, the
directional beam providing the strongest average SNR (dle whehavior is quite different in the office building scenaiéost
call this thestrongest beains expected to point directly to the of the arrows are pointing in a different direction, presbiya
AP discounting reflections. Thus, the AoA can be estimated bye to reflections. Figure 5 (c) qualitatively demonstralés
determining the strongest beam and then using the orientatNote that for the parking lot scenario, the error CDF is gsin
information (Section II-E) to determine the absolute di@mt sharply, and for the office building scenario, the rise isteui
of the strongest beam. (Unless mentioned otherwise, thm begradual denoting significant errors. The median angularerr
direction corresponds to the center of the beam.) &6t for the parking lot is aboutl5° (small) and for the office
denote the absolute direction of the strongest beam at eéctilding is abouts5° (unacceptably large). Note also that the
measurement poirtz;, y;) along the drive. 90-percentile error for parking lot ig3° — similar to the

E. Determining Orientation

A. Preliminaries
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Fig. 5. (a), (b): AP location and directions of the strongesams in two scenarios demonstrating the impact of reflectighsCDF of the angular error
of the strongest beam from the actual direction towards tReirAtwo scenarios.

beamwidth of the antenna, while the 90-percentile error fangular errors The angular error is the error considering the
office building is again very largel £5°). beamwidth and is determined as described in Section IlI-A
This study indicates that straight-forward approaches toln addition, we use weights when minimizing the sum-
minimize the sum-square of angular errors [6] using ttgguare of angular errors. The intuition for this is as fol-
estimated AoA values can give rise to significant errors iows. Since the strongest beam is the one that is important
cluttered environments where the strongest signal reatieesfor estimating AoA, we should make distinctions between
MOBISTEER node after one or more reflections. Since thigieasurement points with high SNR on the strongest beam
situation will be the common case for roadside APs, modelimgmpared to those with low SNR on the strongest beam.
reflections is important. We use the average SNR (in dB) of packets received in
An interesting observation in Figure 5(b) is that whiléhe strongest beam as the weighting function. This intltive
arrows are all pointing to different directions, there ssenputs emphasis on measurement points close to the actual AP
to be a clustering effect. The arrows are not pointing tecation or on those received on a direct beam.
random directions but towards one of a handful of possibleMore formally, let w; be the weights assigned to each
directions. This is as if each arrow is pointing towards eith measurement point. Let;(i) and a,(i) denote the left and
the real AP or one of its images arising out of presence Gght half-power directions of a beam with absolute angle
reflections. The complexity of modeling reflections now is:(i). We seek to find ak-clustering of the measurement
that there is no knowledge of the number and locations pfints into k& clusters (Sy,...,Sx) and obtaink locations
reflective surfaces that give rise to these images. Thuse thé; = (X;,Y;),1 < i < k, that minimize the following
is no knowledge of number of images to look for, and the reabjective function:
AP is indistinguishable from any of its image. DY w; - min{[au(j) — arctan(Y; — y;, Xi — ;)2
. . . . . i=1 €S, j 1\J arctan(r; — Yj, Ay — Zj)|",
We will approach this problem in the following fashion. J [, (j) — arctan(Y; — y;, X; — )2}

1) Use the well-knowrt-means algorithnji25] to group the . - _ .
measurement points infoclusters such that each groud\lote that the quantity within{.} is the angular error using

of measurement points have the strongest beam pointmg non-zero bea.mwidth idea_l. Sincg the gngular error can be
(approximately) towards the same location. Thdse between 0 andr, if the quantity within{.} is larger than,

locations include the real location and the images 'S Subtracted frommr. . . .
the AP. Since the number of reflective surfaces are not! '€ k-means clustering algorithm works in the following

knowna priori, we use the Anderson-Darling normalityway' .For any given vglue of, assumeLl,.. .-, L are thek
test [26] to learn the value df while clustering (more locations of the AP (i.e., real and the images) to be deter-
mined. Initially, L;’s are chosen randomly within the ‘feasible

on this in section IlI-E). P o
2) Determine which one of thedeimages is the real AP. region’ Each measurement point is mapped to sdipehat

We show that it is impossible to determine in a generQIrOVideS the minimum angular error for this measurement
case, but heuristics can be used quite successfully point. Thus, the measurement points are now clustered into

, o , : k clusters. The algorithm then repeats the following two step
We describe the details in the following subsection. until convergence.

. . . Compute a point for each cluster, denoted®@y in the
C. Modeling Reflections by-Means Clusterin * . ; A U :

odeling € by S 9 feasible region that minimizes the weighted intra-cluster
Given the set of tuples< x;,y;,«(i) > for each mea-

surement point a|0ng the drive, the main idea is to clusterz'” our experiments, we defined the feasible region as a squas&l®
600m around the measurement points. We assume the transmiasgs of

the measurement points into clusters and find locations e ap is not more than 300m and thus the possible locationeahh should
which minimize theaggregate of intra-cluster sum-square obe within a region of radius 300m from the measurement points.



sum-square of the angular errors within each cluster. 3 R NG
« C;’s now become new;’s. Re-cluster by mapping each _ >° [+ e

measurement point to the; that provides the minimum & s N \ & 65

angular error as before. § - \j\ ) § 75 .
Convergence is obtained when the clustering does not chanE]:e’75 TN © e ) - N
Now we havek locations, L, ..., Ly, which represent the  gs L3 20559757 i g5 0595858, BF
images of the AP including the real location. The next step is 1 1£g 1&Z\d:£,3i;§nce)2 21 04 O'GLoof (A1ctL]e.1I2D1i's‘t‘ar11;:?a)1.8 2
to choose one of thesk points as the estimated location of @ *
the AP. Fig. 7. Relationship between distance and RSS in (a) parlobhgb)

) ) apartment complex.
D. Choosing Real AP Location from Images

The k-means clustering gives a set of possible locations @hme statistical means to estimatefrom the measurement
the AP, with one of them being the true location and the regtia as there is na priori knowledge of number of images.
of them reflepted images.' However, .it is hard to di.StinQUi%htuitively, we would like the measurement points to be
the true location from the image. A simple example is showtysiered nicely such that in each cluster the strongeshbea
as in Figure 6. In the left figure, two measurement poty® 5| hoint to the same locatiof;. In other words, the angular
receive signal from the AP. The signal from AP iis direéct  grror within one cluster should heni-modal Thus, we use the
but the signal toA was reflected once. Thus at locatioh jges from the G-means algorithm [27] and learn the number
the strongest beam to the image of AP. Notice that in thig cjysters,k, by checking whether the angular error values
figure everything is symmetric, thus we can swap the AP afd o5ch cluster follows a Gaussian distribution.
its image and have another feasible configuration (rigt). | \ne start with the value of=1 and successively increment
other wo_rds., given a set d@f possible locations including the k, performing ak-means clustering in each step as described
AP and its images, and the way the strongest beam at eaehfore  After clustering, we check whether the error values
measurement point points to these locations, it is imp@ssiy, gach cluster satisfy a statistical test for normalitythéy
to tell the true location of the AP apart from the imagesys we stop the procedure: otherwise, we incremergnd
as the same information may admit two (or more) feasiblgeat. We have used the standard Anderson-Darling naymal
configurations. test [26] [28] with a significance levilof 1% to test for
normality.

IV. PERFORMANCEEVALUATION

In this section, we present a detailed performance evaluati
of our Drive-by Localization approach (DrivebylLoc) using
measurements from the 21 APs in three environments as
shown in Figure 3. The main comparison points are (i) a
Fig. 6. It is impossible to tell the true location of the AP &pf&om trilateratio_n approach using diStanF:e information [29]i-e_s
the images, as the same information may admit two (or more) feasitiated using from signal strength information (SNR) using
configurations. omni-directional antenndand (i) VORBA [6], a localization
approach using directional antenna and AoA information. We
With this difficulty in mind, we use a heuristic to choose th@/S0 Study and quantify the effect of several factors thaiiot
true AP location. Notice that if the strongest beam at a pBint "€ Performance of our system.

points to an image, then the imagealsvaysfarther away from A. Benefit of Using Directional Antennas and AOA
P than the true location. Thus from a particular measurement o
point's view, the true location must be closer than any of In Figure 9 (a), we show the CDF of the localization errors

the images. Based on this observation, we propose a Simf&@[?rivebyLociand thg trilateration approach for the 21lesas
heuristic that works very well in practice. Each measuremepfudied. The trilateration approach fundamentally depeord
point ranks thek images based on their distances to itself. THE€rving distance estimates from the received signal gtren
nearest image is ranked 1st and the next is ranked 2nd 4RS)- RSS is derived from SNR assuming constant noise. A
so on. We compute the weighted (weights beings defined §|mple.propagat|on path loss modellng approach was used to
before) sum of the ranks for each image and choose the im4gé" distance from RSS following the method used in [30].
with the least value of the weighted sum. In our experimeni<'® idea is to assume exponential decay of RSS with distance.

this always gives the location closest to the true AP logatio! "US: RSS (in dBm) should have a linear relationship with
the log of distance<RSS, distance tuples are collected in

E. Learningk for Clustering
- . . . . SSignificance level is the chance of incorrectly judging a afevalues to
One remaining issue is to determine the right valuekof pe not Gaussian.

to be used in thek-means clustering algorithm. We need “The same antenna with omni-directional beam is used for thidyst
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the data collection phasassumingthat the AP locations are for DrivebyLoc is about 15 m, while for VORBA it is about
known. This provides the scatterplot in Figure 7. A lineaB0 m.
regression (shown) provides the necessary path loss mmdel tFor the curious reader, we make a note here which scenarios
be used to estimate distance from RSS. Note that (i)Rhe these 21 sets of experiments correspond to. Note the labels
value of the regression is not high; and (ii) the parking Iqi) and (c) on top of some of the columns. These correspond
scenario provides a relatively more accurate modelingh@rig to scenarios Figure 3(a) and (c). The rest correspond to the
R?). The latter is likely due to lesser reflections and shadgwirscenario in Figure 3(b). Thus, as expected all schemes get th
problems. best results in the parking lot.

Figure 9 (a) clearly shows that DrivebyLoc is aboutcader
of magnitudebetter than trilateration. The median localizatiofr"
error in DrivebyLoc is about 15 m, while it is about 128 m As we take measurements while moving in a car, the
in trilateration. In fact, the maximum error in DrivebyLos i location of a measurement point is obtained through a GPS
less than 30 m. This shows that it can localize APs withianit. GPS devices are known to have errors [31]. In this
the accuracy of individual homes even in a very clutteregection, we study the impact of GPS error in our localization

Impact of GPS Accuracy

environment. approach. In order to quantify the effect of GPS error, we
i . . ) . did one experiment in an open parking lot as shown in
B. Benefit of Modeling Reflection Using Clustering Figure 3(a) by manually measuring the distance between

We now study the benefit of modeling reflection usingairs of measurement points and findiagsolute coordinates
the k-means clustering idea and also of modeling non-zefor each point. For this purpose, we used the cart setup
beamwidth. For this purpose, we compare our results wigs mentioned in Section II-D instead of a car. We moved
those of VORBA [6]. In VORBA a similar approach is takenthe cart and stopped at fixed measured distances and took
except that a) signal reflections and b) non-zero beamwidtieasurements on all directional beams. The dotted lines in
are not modeled and c) no weighting using SNR is used. Figure 3(a) show the points where the measurements were

Figure 8 shows the localization errors obtained using thrésken. We also noted the GPS coordinates at each measurement
approaches in each of our 21 experiments categorized by gwént. The localization error for this particular experime
value ofk learned using the Anderson-Darling normality tesusing the manually measured absolute coordinates is around
For DrivebyLoc we show the performance with and without2.6 m while the localization error using the GPS coordisate
modeling of non-zero beamwidth as discussed in SectioA.lll-is around 16.4 m. This shows that the GPS errors indeed
Note that the same results for DrivebyLoc with beamwidtivorsen the performance of our localization approach. To get
modeling was shown before in Figure 9(a) in CDF form. a better insight about the GPS accuracy, we show the CDF

Note that all three schemes perform almost similarly whest GPS errors for this particular experiment in Figure 9 (b).
K = 1. VORBA's performance worsens for largéf. Some The GPS error is computed by finding the difference between
very large errors are observed for VORBA = 4 relative to to actual distance between two points and the distance coahpute
DrivebyLoc. This indicates the modeling reflections isicat using the GPS coordinates of the two points. The median
for accurate localization. The impact of modeling beamwidtGPS error is about 1.25 m and this causes an increase in our
is usually small and in general it is beneficial, though a fel@calization error by about 4 m.
outliers are indeed noticed. But overall it should be recom- The GPS error could be higher in a cluttered environment
mended that DrivebylLoc be used with modeling beamwidtivith buildings and trees blocking the GPS signals from
Note also that DrivebylLoc’s performance with increasiig the satellites. To understand this better, we repeatedasimi
is relatively stable compared with VORBA. Overall it can b&PS error measurements for the office building scenario. As
concluded that out of the three differences (see above)dsgtw expected, the errors were higher (median error about 5.5 m)
DrivebyLoc and VORBA, modeling reflections has the mostigure 9 (b), shows the CDF of GPS errors in these two sce-
impact. Also, overall with the entire data set the medianrerrnarios. This error is quite comparable to the errors Drilelzy



has in the same scenario (about 20 m). It remains unclear hdirectional antenna and estimates AoA information fromkpac

the GPS errors are contributing to our localization errBigt.  ets transmitted from clients and uses a simple triangulatio

given the parking lot experience above, the results predenaipproach to find the position of the wireless clients. Our

in Figure 8 likely underestimates DrivebyLoc’s performanc approach compared to VORBA is more robust to AoA in-
formation suffering from reflections in cluttered envirosmts

D. Impact of Car Speed that are representative of most urban WiFi deployments.

As mentioned in Section 1I-D, the number of measurement 1 here have been approaches for indoor localization using

samples could impact the accuracy of DrivebyLoc. The nurffin€f mediums such as ultra sounds, infrared, optical waves
ber of samples is inversely proportional to the car speed A Actw_e Badge [32_] is an indoor _Iocz_il|zat|on_ system that
directly proportional to the number of runs. Recall that ir o €TPIOYS infrared medium. Each user is given an infrared &adg

data collection approach we either used a car with slow dri%‘d can be Iocalizgd_ by I_R stations that read the badgeszeActi
(10 mph) or used a cart to walk. Also, in order to 'speed u at [33] uses a similar idea but employs ultrasound medium

the experiments we had the APs broadcast UDP packetsa Fl has extremely high accuracy in the order of centimeters.

250 packets/sec which might happen in practise. We are ndie Cricket [34] system from MIT is another indoor posi-

interested in evaluating what would happen if the car isedriv tioning system that uses ultrasound combined with RF. Is use

at a more normal speed and APs do not transmit any frarﬁ%"eral beacons that transmit ultrasound waves deployed in

other than beacons at 100ms intervals. We use our existiag d4€ C€iling of each room in the building. The mobile nodes
to ‘simulate’ data collection at different speeds and thepeat receving th_ese Waves '”fe[ the range and localize thena_selv
it to simulate multiple runs. To do this simulation experithe In [35], Nasipuri and El Najjar propose an angle based indoor

the existing data is laid out on an imaginary 2D map as pointgcalization system employing optical waves. They useethre
with each point as if ‘lit up’ at 100 ms intervals to simulat otating optical beacon signal generators that generafe- re

the corresponding AP beacons. An imaginary car is driven beacons and wireless sensor nodes equipped with photo

the same roadway with slightly randomly varying speed (t%ensors determine their locations from the estimated angul

simulate reality) about an average. Any point lit up withirseparations between the optical sources. This idea is sbatew

5 m from the current car location is counted as measurem ﬁlfated our approach in the sense that they also use dimattio

at the car location. This can be repeated to simulate melti eams and angle _|nfo_rmat|o_n.
drives. Finally, localization in multihop adhoc and sensor netvgork

In Figure 9 (c), we show the mean localization errors fc&.aS been studied in a number of works [29), [36]-{39] and they

the 17 experiments in the apartment complex scenario alo fjer from eaph (_)ther depending on the type of |nformat|_0|_’1
with the 95% confidence intervals. Two different speeds a ed.for chahzatlon such as angles,.ranges and cantgzcﬂw
multiple drives are shown. As expected, more runs and slo e'ldea 'S to come up with a consistent embedding of the
speeds provide better mean localization error and smailer chIt'hOp network in either 2D or 3D plane.

fidence intervals. As discussed in Section 1I-D, use of rplgti VI. CONCLUSIONS

directional antennas and multiple radios on the movingalehi

would help to reduce the number of runs significantly. In this paper, we have proposed and tested with abundant

experiments a system with directional antennas for loiceyiz
roadside WiFi access points, by simply driving though the
neighborhood where the APs need to be localized. The power
RADAR [1] is one of the first systems to do indoor localizaef the technique is its complete passive nature. It also does
tion of WiFi clients. The key idea is to do an RF fingerprintinghot depend on any prior collection of RF fingerprinting data.
a priori to collect signal strength values from different AP&Vhile similar approaches have been investigated before [6],
tagged with location information. When the wireless clierdur major contribution is identifying that signal reflect®
needs to be localized, it uses the current signal strendtfesa can cause significant localization errors and then devedppi
it receives from different APs and do a lookup on the RE clustering method to solve this problem. The idea is to
fingerprints. There are several follow up works similar teecognizea priori that there could be images of the AP, and
RADAR [2]-[4]. In particular, Ladd et al [2] improve the the real AP might be indistinguishable from the images. Thus
accuracy of indoor localization from about 10 m by RADAR tave localize these — possibly multiple — images and then use a
within 1 m by using probabilistic inference of positionsifio heuristic to identify the real one among the set of imageg. Th
noisy signal information. Using a similar idea, Intel's &a method has demonstrated very satisfactory localizati@u-ac
lab work [5] localize wireless clients in outdoor settingdl racies even in complex environments, compared with exjstin
these ideas suffer from the problem of carefully conductirgpproaches with omni-directional or directional antendas
RF fingerprinting. Also in these works, the emphasis is @pite of using the toughest scenarios for localization, the
localizing WiFi clients unlike our approach. localization errors are roughly between 10-30 m in spite of
Use of directional antennas for localization is not newhe fact many of our APs were indoors. This is very good
VORBA [6], one of the significant work in AoA based indoorcompared to the localization error observed in Intel Place
WiFi localization uses WiFi APs equipped with a rotating.ab outdoor localization effort [5], where thaedianerror is

V. RELATED WORK
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Fig. 9. (a) Localization errors for DrivebyLoc and trilaaéion.(b) CDF of the GPS errors in two scenarios. (¢) Impacspded and number of runs on

localization error.

between 13-40 m in spite of very careful radio fingerprintings]
of the environment. This is an impressive performance givgﬂ
1

that we observed up to about 7.5 m of GPS error in simil 20%

environments. [22]
While the work so far is limited to 2D, this can be extendef?l

to 3D using a combination of antennas so that directivity IS

on both horizontal and vertical axes can be obtained. We wiib]

consider this in the future. We expect that an importanoill

of our work will be the creation of a very accurate ‘WiFi mapy,g

of urban APs with a minimum effort, and eventually motivate

novel applications. [27]
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