
Advanced Techniques of Mobile Ad Hoc and Wireless Sensor Networks

Chapter 2: Single Node
Architecture

For use in conjunction with Protocols and Architectures for Wireless
Sensor Networks, by Holger Karl, Andreas Willig (http://www.wiley.com)

Prof. Yuh-Shyan Chen
Department of Computer Science and Information

Engineering
National Taipei University

Oct. 2007

2

Goals of this chapter

• Survey the main components of the composition of a node
for a wireless sensor network
• Controller, radio modem, sensors, batteries

• Understand energy consumption aspects for these
components
• Putting into perspective different operational modes and what

different energy/power consumption means for protocol design

• Operating system support for sensor nodes
• Some example nodes

• Note: The details of this chapter are quite specific to WSN;
energy consumption principles carry over to MANET as
well

3

Outline

• Sensor node architecture
• Energy supply and consumption
• Runtime environments for sensor nodes
• Case study: TinyOS

4

Sensor node architecture

• Main components of a WSN node
• Controller
• Communication device(s)
• Sensors/actuators
• Memory
• Power supply

Memory

Controller Sensor(s)/
actuator(s)

Communication
device

Power supply

5

Ad hoc node architecture

• Core: essentially the same
• But: Much more additional equipment

• Hard disk, display, keyboard, voice interface, camera, …

• Essentially: a laptop-class device

6

Controller

• Main options:
• Microcontroller – general purpose processor, optimized for

embedded applications, low power consumption
• DSPs – optimized for signal processing tasks, not suitable here
• FPGAs (Field Programmable Gate Array) – may be good for

testing
• ASICs – only when peak performance is needed, no flexibility

• Example microcontrollers
• Texas Instruments MSP430

• 16-bit RISC core, up to 4 MHz, versions with 2-10 kbytes RAM,
several DACs, RT clock, prices start at 0.49 US$

• Atmel ATMega
• 8-bit controller, larger memory than MSP430, slower

7

Communication device

• Which transmission medium?
• Electromagnetic at radio frequencies?
• Electromagnetic, light?
• Ultrasound?

• Radio transceivers transmit a bit- or byte stream as radio
wave
• Receive it, convert it back into bit-/byte stream

8

Transceiver characteristics
• Capabilities

• Interface: bit, byte, packet level?
• Supported frequency range?

• Typically, somewhere in 433
MHz – 2.4 GHz, ISM band

• Multiple channels?
• Data rates?
• Range?

• Energy characteristics
• Power consumption to send/receive

data?
• Time and energy consumption to

change between different states?
• Transmission power control?
• Power efficiency (which percentage

of consumed power is radiated?)

• Radio performance
• Modulation? (ASK, FSK, …?)
• Noise figure? NF = SNRI/SNRO

• Gain? (signal amplification)
• Receiver sensitivity? (minimum S to

achieve a given Eb/N0)
• Blocking performance (achieved

BER in presence of frequency-
offset interferer)

• Out of band emissions
• Carrier sensing & RSSI

characteristics
• Frequency stability (e.g., towards

temperature changes)
• Voltage range

9

Transceiver states

• Transceivers can be put into different operational states,
typically:
• Transmit
• Receive
• Idle – ready to receive, but not doing so

• Some functions in hardware can be switched off, reducing energy
consumption a little

• Sleep – significant parts of the transceiver are switched off
• Not able to immediately receive something
• Recovery time and startup energy to leave sleep state can be

significant

• Research issue: Wakeup receivers – can be woken via
radio when in sleep state (seeming contradiction!)

10

Example radio transceivers

• Almost boundless variety available
• Some examples

• RFM TR1000 family
• 916 or 868 MHz
• 400 kHz bandwidth
• Up to 115,2 kbps
• On/off keying or ASK
• Dynamically tuneable output

power
• Maximum power about 1.4 mW
• Low power consumption

• Chipcon CC1000
• Range 300 to 1000 MHz,

programmable in 250 Hz steps
• FSK modulation
• Provides RSSI

• Chipcon CC 2400
• Implements 802.15.4
• 2.4 GHz, DSSS modem
• 250 kbps
• Higher power consumption

than above transceivers
• Infineon TDA 525x family

• E.g., 5250: 868 MHz
• ASK or FSK modulation
• RSSI, highly efficient power

amplifier
• Intelligent power down,

“self-polling” mechanism
• Excellent blocking

performance

11

Example radio transceivers for ad hoc networks

• Ad hoc networks: Usually, higher data rates are required
• Typical: IEEE 802.11 b/g/a is considered

• Up to 54 MBit/s
• Relatively long distance (100s of meters possible, typical 10s of

meters at higher data rates)
• Works reasonably well (but certainly not perfect) in mobile

environments
• Problem: expensive equipment, quite power hungry

12

Wakeup receivers

• Major energy problem: RECEIVING
• Idling and being ready to receive consumes considerable amounts

of power

• When to switch on a receiver is not clear
• Contention-based MAC protocols: Receiver is always on
• TDMA-based MAC protocols: Synchronization overhead, inflexible

• Desirable: Receiver that can (only) check for incoming
messages
• When signal detected, wake up main receiver for actual reception
• Ideally: Wakeup receiver can already process simple addresses
• Not clear whether they can be actually built, however

14

Ultra-wideband communication

• Standard radio transceivers: Modulate a signal onto a
carrier wave
• Requires relatively small amount of bandwidth

• Alternative approach: Use a large bandwidth, do not
modulate, simply emit a “burst” of power
• Forms almost rectangular pulses
• Pulses are very short
• Information is encoded in the presence/absence of pulses
• Requires tight time synchronization of receiver
• Relatively short range (typically)

• Advantages
• Pretty resilient to multi-path propagation
• Very good ranging capabilities
• Good wall penetration

15

Sensors as such

• Main categories
• Any energy radiated? Passive vs. active sensors
• Sense of direction? Omidirectional?

• Passive, omnidirectional
• Examples: light, thermometer, microphones, hygrometer, …

• Passive, narrow-beam
• Example: Camera

• Active sensors
• Example: Radar

• Important parameter: Area of coverage
• Which region is adequately covered by a given sensor?

16

Outline

• Sensor node architecture
• Energy supply and consumption
• Runtime environments for sensor nodes
• Case study: TinyOS

17

Energy supply of mobile/sensor nodes

• Goal: provide as much energy as possible at smallest
cost/volume/weight/recharge time/longevity
• In WSN, recharging may or may not be an option

• Options
• Primary batteries – not rechargeable
• Secondary batteries – rechargeable, only makes sense in

combination with some form of energy harvesting

• Requirements include
• Low self-discharge
• Long shelf live
• Capacity under load
• Efficient recharging at low current
• Good relaxation properties (seeming self-recharging)
• Voltage stability (to avoid DC-DC conversion)

18

Battery examples

• Energy per volume (Joule per cubic centimeter):

6508601080Energy (J/cm3)

NiCdNiMHdLithiumChemistry

Secondary batteries

120028803780Energy (J/cm3)

AlkalineLithiumZinc-airChemistry

Primary batteries

19

Energy scavenging

• How to recharge a battery?
• A laptop: easy, plug into wall socket in the evening
• A sensor node? – Try to scavenge energy from environment

• Ambient energy sources
• Light → solar cells – between 10 μW/cm2 and 15 mW/cm2

• Temperature gradients – 80 μ W/cm2 @ 1 V from 5K difference
• Vibrations – between 0.1 and 10000 μ W/cm3

• Pressure variation (piezo-electric) – 330 μ W/cm2 from the heel of
a shoe

• Air/liquid flow
(MEMS gas turbines)

20

Energy scavenging – overview

21

Energy consumption

• A “back of the envelope” estimation

• Number of instructions
• Energy per instruction: 1 nJ
• Small battery (“smart dust”): 1 J = 1 Ws
• Corresponds: 109 instructions!

• Lifetime
• Or: Require a single day operational lifetime = 24·60·60 =86400 s
• 1 Ws / 86400s ≈ 11.5 μW as max. sustained power consumption!

• Not feasible!

22

Multiple power consumption modes

• Way out: Do not run sensor node at full operation all the
time
• If nothing to do, switch to power safe mode
• Question: When to throttle down? How to wake up again?

• Typical modes
• Controller: Active, idle, sleep
• Radio mode: Turn on/off transmitter/receiver, both

• Multiple modes possible, “deeper” sleep modes
• Strongly depends on hardware
• TI MSP 430, e.g.: four different sleep modes
• Atmel ATMega: six different modes

23

Some energy consumption figures

• Microcontroller
• TI MSP 430 (@ 1 MHz, 3V):

• Fully operation 1.2 mW
• Deepest sleep mode 0.3 μW – only woken up by external interrupts

(not even timer is running any more)
• Atmel ATMega

• Operational mode: 15 mW active, 6 mW idle
• Sleep mode: 75 μW

24

Switching between modes

• Simplest idea: Greedily switch to lower mode whenever
possible

• Problem: Time and power consumption required to reach
higher modes not negligible
• Introduces overhead
• Switching only pays off if Esaved > Eoverhead

• Example:
Event-triggered
wake up from
sleep mode

• Scheduling problem
with uncertainty
(exercise)

Pactive

Psleep

timeteventt1

Esaved Eoverhead

τdown τup

Alternative: Dynamic voltage scaling

• Switching modes complicated by uncertainty how long a
sleep time is available

• Alternative: Low supply voltage & clock
• Dynamic voltage scaling (DVS)

• Rationale:
• Power consumption P

depends on
• Clock frequency
• Square of supply voltage
• P ∝ f V2

• Lower clock allows
lower supply voltage

• Easy to switch to higher clock
• But: execution takes longer

26

Memory power consumption

• Crucial part: FLASH memory
• Power for RAM almost negligible

• FLASH writing/erasing is expensive
• Example: FLASH on Mica motes
• Reading: ≈ 1.1 nAh per byte
• Writing: ≈ 83.3 nAh per byte

27

Transmitter power/energy consumption for n bits

• Amplifier power: Pamp = αamp + βamp Ptx
• Ptx radiated power
• αamp, βamp constants depending on model
• Highest efficiency (η = Ptx / Pamp) at maximum output power

• In addition: transmitter electronics needs power PtxElec
• Time to transmit n bits: n / (R · R

code
)

• R nomial data rate, R
code

coding rate
• To leave sleep mode

• Time Tstart, average power P
start

→ E
tx

= T
start

P
start

+ n / (R · R
code

) (PtxElec + αamp + βamp Ptx)

• Simplification: Modulation not considered

28

Receiver power/energy consumption for n bits

• Receiver also has startup costs
• Time Tstart, average power P

start• Time for n bits is the same n / (R · R
code

)

• Receiver electronics needs PrxElec

• Plus: energy to decode n bits EdecBits

→ Erx = T
start

P
start

+ n / (R · R
code

) PrxElec + EdecBits (R)

29

Some transceiver numbers

30

Comparison: GSM base station power consumption

• Overview

• Details

• (just to put things
into perspective)

AC power
3802W

DC power
3200W
-48V

RF power
480W

PS
84%

TRXs ACE
Combining

TOC RF
120W

BTS

Central
equipm.

Heat 1920WHeat 602W Heat 360W

Heat 800W

TRX
2400W

CE
800W Total Heat

3682W

AC power
3802W

DC power
3200W
-48V

RF power
480W

PS
84%

TRXs ACE
Combining

TOC RF
120W

BTS

Central
equipm.

Heat 1920WHeat 602W Heat 360W

Heat 800W

TRX
2400W

CE
800W Total Heat

3682W

220V

AC Power
supply

3802W

-48V

3232W

Rack
cabling

-48V

3200W
85% 99%

300W

500W

Fans
cooling

Com-
mon

12 transceivers

60W
idle

85%
Converter
-48V/+27V

9W
Bias

110W
PA

119W

140W

200W

(No active cooling)

40W

Usable PA efficiency
40W/140W=28%

PAs consume
dominant part of power
(12*140W)/2400W=70%

2400W

Combiner DiplexerOverall efficiency
(12*10W)/3802W=3.1%

10W

TOC

15W

Erlang
efficiency 75%

DTX activity
47%

220V

AC Power
supply

3802W

-48V

3232W

Rack
cabling

-48V

3200W
85% 99%

300W

500W

Fans
cooling

Com-
mon

12 transceivers

60W
idle

85%
Converter
-48V/+27V

9W
Bias

110W
PA

119W

140W

200W

(No active cooling)

40W

Usable PA efficiency
40W/140W=28%

PAs consume
dominant part of power
(12*140W)/2400W=70%

2400W

Combiner DiplexerOverall efficiency
(12*10W)/3802W=3.1%

10W

TOC

15W

Erlang
efficiency 75%

DTX activity
47%

31

Controlling transceivers

• Similar to controller, low duty cycle is necessary
• Easy to do for transmitter – similar problem to controller: when is it

worthwhile to switch off
• Difficult for receiver: Not only time when to wake up not known, it

also depends on remote partners
→ Dependence between MAC protocols and power consumption is

strong!

• Only limited applicability of techniques analogue to DVS
• Dynamic Modulation Scaling (DSM): Switch to modulation best

suited to communication – depends on channel gain
• Dynamic Coding Scaling – vary coding rate according to channel

gain
• Combinations

32

Computation vs. communication energy cost

• Tradeoff?
• Directly comparing computation/communication energy cost not

possible
• But: put them into perspective!
• Energy ratio of “sending one bit” vs. “computing one instruction”:

Anything between 220 and 2900 in the literature
• To communicate (send & receive) one kilobyte

= computing three million instructions!

• Hence: try to compute instead of communicate whenever
possible

• Key technique in WSN – in-network processing!
• Exploit compression schemes, intelligent coding schemes, …

33

Outline

• Sensor node architecture
• Energy supply and consumption
• Runtime environments for sensor nodes
• Case study: TinyOS

34

Operating system challenges in WSN

• Usual operating system goals
• Make access to device resources abstract (virtualization)
• Protect resources from concurrent access

• Usual means
• Protected operation modes of the CPU – hardware access only in

these modes
• Process with separate address spaces
• Support by a memory management unit

• Problem: These are not available in microcontrollers
• No separate protection modes, no memory management unit
• Would make devices more expensive, more power-hungry

→ ???

35

Operating system challenges in WSN

• Possible options
• Try to implement “as close to an operating system” on WSN nodes

• In particular, try to provide a known programming interface
• Namely: support for processes!
• Sacrifice protection of different processes from each other
→ Possible, but relatively high overhead

• Do (more or less) away with operating system
• After all, there is only a single “application” running on a WSN node
• No need to protect malicious software parts from each other
• Direct hardware control by application might improve efficiency

• Currently popular verdict: no OS, just a simple run-time
environment
• Enough to abstract away hardware access details
• Biggest impact: Unusual programming model

36

Main issue: How to support concurrency

• Simplest option: No concurrency,
sequential processing of tasks
• Not satisfactory: Risk of missing data

(e.g., from transceiver) when processing
data, etc.
→ Interrupts/asynchronous operation has

to be supported

• Why concurrency is needed
• Sensor node’s CPU has to service the

radio modem, the actual sensors, perform
computation for application, execute
communication protocol software, etc.

Poll sensor

Process
sensor

data

Poll transceiver

Process
received
packet

37

Traditional concurrency: Processes

• Traditional OS:
processes/threads
• Based on interrupts, context

switching
• But: not available – memory

overhead, execution overhead
• But: concurrency mismatch

• One process per protocol entails
too many context switches

• Many tasks in WSN small with
respect to context switching
overhead

• And: protection between
processes not needed in WSN
• Only one application anyway

Handle sensor
process

Handle packet
process

OS-mediated
process switching

38

Event-based concurrency

• Alternative: Switch to event-based programming model
• Perform regular processing or be idle
• React to events when they happen immediately
• Basically: interrupt handler

• Problem: must not remain in interrupt handler too long
• Danger of loosing events
• Only save data, post information that event has happened, then return
→ Run-to-completion principle

• Two contexts: one for handlers, one for regular execution

Idle / Regular
processing

Radio
event

Radioevent handler

Sensor
event

Sensor event
handler

39

Components instead of processes

• Need an abstraction to group functionality
• Replacing “processes” for this purpose
• E.g.: individual functions of a networking protocol

• One option: Components
• Here: In the sense of TinyOS
• Typically fulfill only a single, well-defined function
• Main difference to processes:

• Component does not have an execution
• Components access same address space, no protection against each

other
• NOT to be confused with component-based programming!

40

API to an event-based protocol stack

• Usual networking API: sockets
• Issue: blocking calls to receive data
• Ill-matched to event-based OS
• Also: networking semantics in WSNs not necessarily well matched

to/by socket semantics

• API is therefore also event-based
• E.g.: Tell some component that some other component wants to be

informed if and when data has arrived
• Component will be posted an event once this condition is met
• Details: see TinyOS example discussion below

41

Dynamic power management

• Exploiting multiple operation modes is promising
• Question: When to switch in power-safe mode?

• Problem: Time & energy overhead associated with wakeup; greedy
sleeping is not beneficial (see exercise)

• Scheduling approach

• Question: How to control dynamic voltage scaling?
• More aggressive; stepping up voltage/frequency is easier
• Deadlines usually bound the required speed form below

• Or: Trading off fidelity vs. energy consumption!
• If more energy is available, compute more accurate results
• Example: Polynomial approximation

• Start from high or low exponents depending where the polynomial is
to be evaluated

42

Outline

• Sensor node architecture
• Energy supply and consumption
• Runtime environments for sensor nodes
• Case study: TinyOS

43

Homework #2:

1. What’s the main components and their functions of a
WSN node ?

2. What’s different operational states of a transceiver ?
3. What’s “wakeup receiver “ ?
4. Try to exaplin the following figure.

Pactive

Psleep

timeteventt1

Esaved Eoverhead

τdown τup

