Chapter 3
Iransport Layer

Prof. Yuh-Shyan Chen
Department of Computer Science and
Information Engineering
National Taipei University
April 2007

Transport Lavyer

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

James F. Kurose
Keith W. Ross

i v R, .
| - ! = 3

Computer Networking: A
Top Down Approach
Featuring the Internet,
3rd edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2004.

3-1

= A Z %Jtﬁ:? u ﬁuﬂlkﬁfﬁﬁ

NI W, Department of Comput e and Information Engineering

Chapter 3: Transport Layer

Our goals:

7 understand principles O learn about transport layer
behind transport layer protocols in the Internet:
services: O UDP: connectionless

O multiplexing/demultip transport
lexing O TCP: connection-oriented
O reliable data transfer transport

o flow control O TCP congestion control

O congestion control

WMN
ﬁ/ Transport Laver 3-2

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultip]exing O reliable data transfer

3 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

0 3.4 Principles of reliable
data transfer

@
=

Transport Laver 3-3

F Az g2 2 (EATRSR

NTPU, Department of Computer Science and Information Engineering

Transport services and protocols

O provide logical communication Zpplication
between app processes running S

. data link

on different hosts physical

O transport protocols run in end
systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments into messages,
passes to app layer

O more than one transport
protocol available to apps

O Internet: TCP and UDP

(WM?
$ Transport Laver

ork

Q
4%

network

data link
physical
network
data link
physical network
data link
physical
s actwork
O link
ical
application
O
networ
—data ik |
physical

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

NIJL|_l it of Comput

Transport vs. network layer

O network layer: logical Household analogy:
communication 12 kids sending letters to 12
between hosts kids

O transport layer: logical O processes = kids
communication O app messages = letters
between processes in envelopes

O relies on, enhances,

, 3 hosts = houses
network layer services

O transport protocol =
Ann and Bill

O network-layer protocol
= postal service

WMN
:m/ Transport Laver 3-5

C A2tiths @ RRTRIR
Internet transport-layer protocols

3 reliable, in-order oplcaion
delivery (TCP) neiork —
O congestion control S Ao B oyl
O flow control ¢ ’ —_
O connection setup o \eren |
3 unreliable, unordered a physical
delivery: UDP),
O no-frills (RE79}) extension
of "best-effort” IP application
3 services not available: danTnk

physical

O delay guarantees
O bandwidth guarantees

€ WM?
Transport Laver 3-6

= # 2 %‘Jtﬁ:? \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|_l it of Comput

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

3 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

0 3.4 Principles of reliable
data transfer

WMN
ﬁ/ Transport Laver 3-7

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Multiplexing /demultiplexing

__ Multiplexing at send host: _

— Demultiplexing at rcv host: —

gathering data from multiple
sockets, enveloping data with
header (later used for

delivering received segments
to correct socket

demultiplexing)
[1 =socket (D =process
application @ application application
L T I —
transport transport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

WMN
ﬁ/ Transport Laver 3-8

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

How demultiplexing works

O host receives IP datagrams

O each datagram has source
[P address, destination 1P
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

2

Transport Laver

v

32 bits

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

3-9

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Connectionless demultiplexing

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket(99111);
DatagramSocket mySocket2 = new

DatagramSocket(99222) ;

0 UDP socket identified by
two-tuple:

(dest IP address, dest port number)

=

Transport Laver

3 When host receives UDP
segment:

O checks destination port
number in segment

O directs UDP segment to
socket with that port
number

0 IP datagrams with
different source IP
addresses and /or source
port numbers directed to
same socket

3-10

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Connectionless demux (Cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

e e

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

IP: A IP: C IP:B

SP provides “return address”

WMN
ﬁ/ Transport Layer 3-11

= A Z %Jtﬁ:? u ﬁnﬂﬂz%‘é+

Nl U, Department of Comput e and Information Eng

Connection-oriented demux

0 TCP socket identified by O Server host may support

4-tuple: many simultaneous TCP
O source IP address sockets:
O source port number O each socket identified by its
O dest IP address own 4-tuple
O dest port number 3 Web servers have

7 recv host uses all four different sockets for each
values to direct segment connecting client
to appropriate socket O non-persistent HTTP will

have different socket for
each request

WMN
ﬁ/ Transport Layer 3-12

Connection-oriented de

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

mux™

(cont)

&

e and Information Eng

SP: 5775

DP: 80

S-IP: B

D-IP:C

client
IP: A

2

SP: 9157

N

DP: 80

S-1P: A

D-IP:C

server
IP: C

Transport Laver

SP: 9157

DP: 80

S-IP: B

D-IP:C

Client
IP:B

3-13

Connection-oriented de

ﬁ],:z.%it;‘:? h_ ﬂ‘ﬂIF’@—f*

mux:

Threaded Web Server

&

e and Information Eng

client
IP: A

2

M >
1 I L M
SP: 5775
DP: 80
S-1P: B
D-IP:C
L
SP: 9157 SP: 9157
DP: 80 DP: 80
server
S-1P: A IP: C S-1P: B
D-IP:C D-IP:C

Transport Laver

Client
IP:B

3-14

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

0 3.4 Principles of reliable
data transfer

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
O flow control

O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

WMN
ﬁ/ Transport Layer 3-15

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

NTH JL|_’|ln it of Comput

UDP: User Datagram Protocol [REC 768]

e and Information Eng

3 “no frills," "bare bones"
Internet transport protocol

3 “best effort” service, UDP
segments may be:

O lost

O delivered out of order to
app
O connectionless:

O no handshaking between
UDP sender, receiver

O each UDP segment
handled independently
of others

Why is there a UDP?

[no connection establishment
(which can add delay)

O simple: no connection state
at sender, receiver

Q

small segment header

M

no congestion control: UDP
can blast away as fast as
desired

WMN
_:f?/ Transport Laver

3-16

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

UDDP: more

O often used for streaming

multimedia apps) 32 bits >
O loss tolerant Length, in | Source port # | destport #
O rate sensitive bytes of UDP [length checksum
A other UDP uses i;i%ﬁ?ﬁtg
O DNS header
O SNMP
O reliable transfer over UDP: Application
add reliability at application data
layer (message)
O application-specific error
recovery!

UDP segment format

3-17

=

Transport Laver

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender: Receiver:

O treat segment contents as O compute checksum of received
sequence of 16-bit integers segment

3 checksum: addition (1's O check if computed checksum
complement sum) of equals checksum field value:
segment contents O NO - error detected

0 sender puts checksum O YES - no error detected. But
value into UDP checksum maybe errors nonetheless?
field More later ...

3-18

=

Transport Laver

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

, Depart

Internet Checksum Exa ple™

7 Note

O When adding numbers, a carryout from the most
significant bit needs to be added to the result

0 Example: add two 16-bit integers

11100110011 00110
11 010101010101 01

wraparound ()1 001 1 1 01110111011

sum 1 111 111 1111
checksum 0] 00O O 0O 0O0O00O

WMN
ﬁ/ Transport Layer 3-19

0] 0] o) 00
1 1 1 1 1

= # 2 %‘Jtﬁ:? \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|_l it of Comput

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

3 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

O 3.4 Principles of reliable
data transfer

WMN
ﬁ/ Transport Layer 3-20

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Principles of Reliable data transfer

O important in app., transport, link layers
O top-10 list of important networking topics!

-
O
-
ORN()
O 3 |receiver I
% = OroCess process
3 1

dt d ;
= L()relicible Chc:lrmel)I xdt_send() deliver data()
8_ 5 reliable data reliable data
T fransfer protocol transfer protocol
% O (sending side) (receiving side)
=

udt_send()i Irdt_rcv O

Junreliable c:hc:mnel)iA

(a) provided service (b) service implementation

O characteristics of unreliable channel will determine complexity
of reliable data transfer protocol (rdt)

WMN
:m/ Transport Layer 3-21

@A%’Jtﬁ?‘ h ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

Reliable data transfer: getting started

rdt_send(): called from above, (e.g., deliver_data(): called by rdt to
by app.). Passed data to deliver data to upper
deliver to receiver upper layer /
\ rdt send()

data|[deliver data()

send [reliable data reliable data receijve
d tfransfer protocol transfer protocol d
S1A€ (sending side) (receiving side) s1de
udt_send ()i packet packet Irdt_rcv ()
T—h()unrelioble channel)J
udt_send(): called by rdt, rdt_rcv(): called when packet arrives
to transfer packet over on rcv-side of channel
unreliable channel to receiver

WMN
f/ Transport Laver 3-22

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Reliable data transfer: getting started

We'll:
O incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

O consider only unidirectional data transfer

O but control info will flow on both directions!

O use finite state machines (FSM) to specify sender,

receiver
event causing state transition

actions taken on state transition
—_

state: when in this
“state” next state
uniquely determined
by next event

WMN
:m/ Transport Layer 3-23

@
=

- _*’. -
F Az ERXB(GEATESRR
NTPU, Department of Computer Science and Information Engineering

Reliable Data Transfer Protocols

ORDT 1.0
O RDT 2.0
ORDT 2.1
ORDT 2.2
O RDT 3.0

Transport Laver 3-24

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Rdt1.0: reliable transfer over a reliable channel

0 underlying channel perfectly reliable
O no bit errors
O no loss of packets

O separate FSMs for sender, receiver:

O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

*»\Wait for
call from

above

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

=

Transport Laver 3-25

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

Rdt2.0: channel with bit errors

O underlying channel may flip bits in packet

O checksum to detect bit errors

O the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender that
pkt received OK

O negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

O sender retransmits pkt on receipt of NAK

O new mechanisms in rdt2.0 (beyond rdtl.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

=

Transport Laver 3-26

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

=

Transport Laver

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

3-27

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt_send(sndpkt

E———

rdt_rcv(rcvpkt) &&

Wait for ISNAK(rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

WMN
:m/ Transport Layer 3-28

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

rdt2.0: error scenario

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

. ~ ()
rdt_rcv(rcvpkt) && isACK(rcvpkt) h :
P Wait for
call from
below

A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Laver 3-29

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

rdt2.0 has a fatal ﬂaw!

What happens if Handling duplicates:
ACK/NAK corrupted? 0 sender adds sequence number
0 sender doesn't know what to each pkt
happened at receiver! O sender retransmits current
O can't just retransmit: possible pkt if ACK/NAK garbled
duplicate O receiver discards (doesn't

deliver up) duplicate pkt

— stop and wait
Sender sends one packet,
then waits for receiver
response

WMy
ﬁ/ Transport Layer 3-30

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iSACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A
\'/A\Vg:ifgrr Wait for
rdt_rcv(rcvpkt) && NAK 1 Caalllb%)\treom
(corrupt(rcvpkt) ||
iSNAK (revpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Sequence NO: 0101010101
Alternative Bit Protocol (ABP)

e

Transport Laver 3-31

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q*

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && <
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

@
=

Transport Laver 3-32

rdt2.1: discussion

Sender:
0 seq # added to pkt

3 two seq. #'s (0,1) will
suffice. Why?

3 must check if received
ACK/NAK corrupted

O twice as many states

O state must "remember”
whether "current” pkt
has 0 or 1 seq. #

=

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Receiver:

0 must check if received
packet is duplicate
O state indicates whether O
or 1is expected pkt seq #
[note: receiver can not
know if its last
ACK/NAK received
OK at sender

Transport Laver 3-33

= # 2 %‘Jtﬁ#u ﬁnﬂﬂz —f~

NIJL|.l nt o

rdt2.2: a NAK-free protocol

O same functionality as rdt2.1, using ACKs only

O instead of NAK, receiver sends ACK for last pkt

received OK
O receiver must explicitly include seq # of pkt being ACKed

O duplicate ACK at sender results in same action as NAK:
retransmit current pkt

3-34

=

Transport Laver

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

rdt2.2: sender, receiver fragments

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seql(rcvpkt))

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

udt_send(sndpkt)

N <l D,
—< o fo (corrupt(rcvpkt) ||
call 0 from ACK S ———
.................. 10 e 0 udt_send(sndpkt)
.. sender FSM
... fragment rat_rev(revpkt)
..................................... && nOtcorrupt(rcvpkt)
...................................... && isACK(rcvpkt,0)
.. A
receiver FSM e
fragment e
— — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) el
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)
Transport Laver 3-35

@

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

rdt3.0: channels with errors and loss

New assumption: Approach: sender waits
underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) 7 retransmits if no ACK received

O checksum, seq. #, ACKs, in this time
retransmissions will be of O if pkt (or ACK) just delayed
help, but not enough (not lost):

O retransmission will be
duplicate, but use of seq. #'s
already handles this

O receiver must specify seq #
of pkt being ACKed

O requires countdown timer

Transport Laver 3-36

rdt3.0 sender

\
\

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

i
=

rdt_send(data)

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
\ start_timer

Wait for
call Ofrom
above

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))

A

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Laver 3-37

rdt3.0 in action

sender receiver
okt
send pki0 \O‘ eV pkio
ACK send ACKO
rcv ACKO
send pktl kT]
rcv pkil
ACK send ACK]1
rcvACK
send pkiO Kt g
rcv pkio
ACK send ACKO

(Q) operation with no loss

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

sender receiver
Ikt
send pkio 0 eV pkio
ACK send ACKO

rcv ACKO

send pkt1] \%
(loss)

fimeout _|
resend pkil %
[CV ki1
ACK send ACK]

rcvACKT o

send pkiO
rcv pkiO
)8/ send ACKO

(b) lost packet

3-38

Transport Lavyer

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

rdt3.0 in action

sender receiver sender receiver
okt kt
send pki0 N’ rcv pki0 send pki0 \% rcv pki0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO

rcv pktl
send ACK1

send pki1 DKt send pkt1 7]
rcv pki
send ACKT
fimeout

ACK
(loss) x&)’
resend pkil -

fimeout = pkt 4
resend pki1 \rcv ol .
(detect duplicate) rcvVACK

rcv pktl
(detect duplicate)

o ACK send ACK send pki0 send ACK]
;%\r;d okiO kt rcv pkiO
‘v bkio send ACKO
ACK P ACK @
send ACKO
(c) lost ACK (d) premature timeout

3-39

Transport Lavyer

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Performance of rdt3.0

O rdt3.0 works, but performance stinks
0 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

L (packet lengthin bits) ~ _ 8kb/pkt

transmit "R (transmission rate, bps) 109 b/sec 8 microsec
.008
U - L/R = 0.00027
sender pyT.L /R 30.008
O U qer utilization - fraction of time sender busy sending

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

i
=

Transport Laver 3-40

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —s - oo
last packet bit transmitted, t = L / R

first packet bit arrives
—last packet bit arrives, send
ACK

RTT

ACK arrives, send next,
packet, t=RTT+L/R |

o

U = L/R -008 = 0.00027

sender RTT+L/R - 30.008

' f/ Transport Laver 3-41

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O butfering at sender and/or receiver

data pc:ckef—n-

<+— ACK packefts

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

O Two generic forms of pipelined protocols: go-Back-N,
selective repeat

WMN
f/ Transport Layer 3-42

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —-------- oo
last bit transmitted, t=L /R

~_ O first packet bit arrives

\\ last packet bit arrives, send ACK
> last bit of 2" packet arrives, send ACK
last bit of 3™ packet arrives, send ACK

RTT

ACK arrives, send next
packet, t=RTT +L/R |

'...'.._',f:_'_':““'--.: Increase utilization
N / by a factor of 3!

Uy -_3*L/R _ .02
sender RTT + L / R 30.008

= 0.0008

|
s

3-43

<

Transport Lavyer

= E 2 %kﬁﬁgLﬁﬂIF$+

Nl U, Department of Comput e and Information Eng

Go-Back-N

Sender:
O k-bit seq # in pkt header

J “window" of up to N, consecutive unack'ed pkts allowed

send_base nextsegnum dlready Usable. hot
lv i ack’ed yet sent
JIIECCELEEEEIRL D000 | septanproa] motusce
+ __ window size —4
N

0 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
O may receive duplicate ACKs (see receiver)
O timer for each in-flight pkt

O timeout(n): retransmit pkt n and all higher seq # pkts in window

WMN
ﬁy Transport Laver 3-44

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextsegnum)

start_timer
nextsegnum-++
A else
—_— e refuse data(data
base=1 * — ()

o
‘e

nextsegnum=1 "

‘ ‘ timeout
start_timer
3 udt_send(sndpkt[base])
G‘ U udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqnum-1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
N start_timer
3-45

@

Transport Laver

G Azinre (ENIRSR

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ (> && notcurrupt(rcvpkt)

A T~ - && hassegnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
O may generate duplicate ACKs
O need only remember expectedseqnum
O out-of-order pkt:

O discard (don't buffer) -> no receiver buffering!
O Re-ACK pkt with highest in-order seq #

WMN
ﬁ/ Transport Laver 3-46

GBN in
action

F Az g re ((*EATESSR

sender receiver
send pktQ \
rcv pkio
send pkt1 sencF::i)ACKO
> send pki2 \(],C'(SS) oV R ok
send pker
(wait) rcv pkt3, discard
/ send ACK]
rcv ACKO
send pki4
rcv ACK rcv pktd, discard
send pktd \ sendlﬁr\é]g g
rcv iscar
- okf2 timeout / send ACK]
send pktZ \
send pkt3 \ rcv pki2, deliver
send pkt4 send ACK2
send pktd rcV glﬁr\% F%ehver
sen

/

Transport Lavyer

NTPU, Department of Computer Science and Infermation Engineering

3-47

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Selective Repeat

O receiver individually acknowledges all correctly
received pkts

O butffers pkts, as needed, for eventual in-order delivery to
upper layer

O sender only resends pkts for which ACK not
received

O sender timer for each unACKed pkt
O sender window

O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

=

Transport Laver

3-48

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Selective repeat: sender, receiver windows

send_base hexfseghum dlready Lsable. rot
Jv ¢ ack’ed yet sent
0T
t _ window size—24
N

(a) sender view of segquence numbers

out of order

acceptable
(buffered) but — § (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIHIII |t [et

A __ indow size_—24

1 N

rcv_base

T T T T T T o N

(b) receiver view of sequence numbers

WMN
:W/ Transport Laver 3-49

Selective repeat

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

— receiver

—sender
data from above :

O if next available seq # in
window, send pkt

timeout(n):

O resend pkt n, restart timer

O mark pkt n as received

advance window base to
next unACKed seq #

ACK(H) In [sendbase,sendbase+N]:

O if n smallest unACKed pkt,

pkt nin [rcvbase, rcvbase+N-1]
0 send ACK(n)
O out-of-order: buffer

O in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
O ACK(n)
otherwise:

O ignore

Transport Laver

3-50

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering
Selective repeat in action
pktl =ent
01234567873 ‘__hﬂq__hﬂq_hhﬁﬁ_‘““ﬁ‘pktﬂ rovd, delivered. ACKD =ent
pktl =ent nfL 2 2 4|56 7 89

01234567873 pktl rocvd, deliversed., ACK1l =ent

pkt2 =ent 01|12 3 4 5|6 7 89
— |01 2 3456 789 W
(loss)

pkt3 =ent. window full
N1z 3456 7849

pkta rovd, uf fered, ACKI =ent
01|2 3458 7819

ACKD rowd, pktd ==nt
oL 2 2 4156 7 89

r plktd rovd, uffered. ACK4L =ent
ACKl rowd, pkth =ent 01|12 3 4 56 7 8 9

01{2 3 4 5fe 7 8 9

pkth rowd, uffered. ACKEL =ent
012 245/ 7 829

—— pkt2 TIMEOUT, pkt? resent
012 2 4 Ele 7 8 9

pkt2 rovd, pkt?. pkt3,pktd, pkth
delivered. ACKZ =sent

ACK3 rowd. nothing sent 012345k 7849
n1l|2 2 45|js 7 819

S
2

5

3-51

Selective repeat:
dilemma

Example:
0 seq#s:0,1,2,3
O window size=3

[receiver sees No
difference in two
scenarios!

O incorrectly passes
duplicate data as new in

(a)

Q: what relationship
between seq # size and
window size?

J

-
r

<

F AZE LB (G EHTIRBR
receiver Window o ccring
(after receipt)

sender window
(after receipt)

ktO
012301;_)

Oj1 2 3j01 2

CKO
CK1
ACK2

012301 0123012

0123012

012)301}2

timeout
retransmit pktO

ktO
012301£

- receive packet
with seq number O

sender window
(after receipt)
pktO
012|301 2

pktl CKO
0123012
CK1

pkt2
ACK2

receiver window
(after receipt)

Ofj1 2 3J0 1 2

0 1j2 3 0)J1 2

012|301 01213012

01 2 3j0 1

0 1j2 301

receive packet
with seq number O

()

Transport Laver 3-52

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

0 3.4 Principles of reliable
data transfer

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
O flow control

O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

WMN
ﬁ/ Transport Layer 3-53

TCP: Overview

O point-to-point:

O one sender, one receiver
O reliable, in-order byte

steam.:

O no "message boundaries”
O pipelined:

O TCP congestion and flow

control set window size

O send & receive buffers

socket
door —

TCP
send buffer

TCP
receive buffer

[segment] —» ()

Transport Lavyer

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

RFCs: 793, 1122, 1323, 2018, 2581

O full duplex data:

O bi-directional data flow in
same connection

O MSS: maximum segment
size
O connection-oriented:

O handshaking (exchange of
control msgs) init's
sender, receiver state
before data exchange

3 flow controlled:

O sender will not
overwhelm receiver

socket
door

3-54

TCP segment structure

= A Z %Jtﬁ:? u ﬁnﬂﬂz%‘é+

32 bits

URG: urgent data
(generally not used) ™|

source port #

NTH JL|_’|ln it of Comput

e and Information Eng

dest port #

v

counting

ACK: ACK #

sequence number

by bytes
of data

valid

C

owledgement number

(not segments!)

PSH: push data now
(generally not used)— |

not

AlPIR[S|F

Receive window

C

VEALY

>

sum
Z

Urg data pnter

bytes
rcvr willing

RST, SYN, FIN:— |
connection estab

Optjons (variable length)

to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

s

application
data
(variable length)

Transport Laver

3-55

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
“number” of first
byte in segment's
data

ACKs:

O seq # of next byte
expected from other
side

O cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up to
implementor

2

host ACKs
receipt of
‘C’, echoes
back ‘/C’
host ACKs
receipt Se

943, A

of eICCh’oed Sn S CK=gp

simple telnet scenario

time

Transport Laver 3-56

S

LE

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
0

_timeout value? SampleRTT: measured time from
. segment transmission until ACK

O longer than RTT receipt
O but RTT varies O ignore retransmissions
3 too short: premature 0 SampleRTT will vary, want
timeout estimated RTT "smoother”

O average several recent

Q unnecessary :
o measurements, not just current
retransmissions SampleRTT

O too long: slow
reaction to segment
loss

Transport Laver 3-57

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT

O Exponential weighted moving average
O influence of past sample decreases exponentially fast
O typical value: a =0.125

WMN
ﬁ/ Transport Layer 3-58

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Example RTT estimation:

350 +

300

N
a1
o

RTT (milliseconds)

N
o
o

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

1 T 1 fl M

1 ‘ AA | ‘ s)
AM“ / ‘ARVVAV y“‘yA"‘A Y‘ H"’ r' "l w

150 -

15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

‘—O—SampIeRTT —=— Estimated RTT ‘

Transport Laver 3-59

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)
Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

WhN
ﬁy Transport Layer 3-60

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultip]exing O reliable data transfer

3 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

0 3.4 Principles of reliable
data transfer

@
=

Transport Laver 3-61

S

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

TCP reliable data transfer

3 TCP creates rdt service [Retransmissions are
on top of IP's unreliable triggered by:

service O timeout events
O Pipelined segments O duplicate acks
7 Cumulative acks O Initially consider

simplified TCP sender:

0 TCP uses single
O ignore duplicate acks

retransmission timer
O ignore flow control,

congestion control

Transport Laver 3-62

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

TCP sender events:

data rcvd from app: timeout:

O Create segment with O retransmit segment that
seq # caused timeout

0 seq # is byte-stream O restart timer
number of first data Ack revd:
byte in segment 0 If acknowledges

O start timer if not already previously unacked
running (think of timer segments
as for oldest unacked O update what is known to
segment) be acked

7 expiration interval: O start timer if there are
TimeOutlnterval outstanding segments

WMN
ﬁ/ Transport Layer 3-63

. lfiﬂ,__ -) _.-:"" = = I:Iﬁﬂ?"
NetheqNum = InltlalseqNum }T;J Ll%}jh%uﬁtnf‘u_?|&ﬁﬂ%ﬁﬂ£iﬁiuﬁ
SendBase = InitialSeqNum '

loop (forever) { TCP

switch(event)
sender
event: data received from application above

create TCP segment with sequence number NextSegNum (slmphfled)
if (timer currently not running)
start timer

pass segment to IP Comment:
NextSegqNum = NextSegNum + length(data) e SendBase-1- last
event: timer timeout cunllula’uvely
retransmit not-yet-acknowledged segment with ack’ed byte
smallest sequence number Example:
start timer e SendBase-1 =71;
y= 73, so the rcvr
event: ACK received, with ACK field value of y wants 73+ ;
if (y > SendBase) { y > SendBase, so
SendBase =y that new data is
if (there are currently not-yet-acknowledged segments)
start timer acked
}

} I* end of loop forever */

A
o)

Transport Laver 3-64

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

TCP: retransmission scenarios

Host B@

s
%
>
s
%
>
s
%
%

Se =9

2, 8 bytes d ata -I_

2 _A00 &

é b=

= X &

l loss A

Se =

9=92 8 byteg dat, Sen(il(;gse %_

- =

SendBase ¢

5 =120 £

o

P]

SendBase m
=100 SeildBase _L

v il =120 v premature timeout
° time
time

lost ACK scenario
WMN'S
- Transport Layer 3-65

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

TCP retransmission scenarios (more)

@ Host A Host B @

Seq=

~

9
2, 8 bytes d ata

timeout ——
L
~Q
Il

SendBase AC
=120

v
time
Cumulative ACK scenario

v

WMN
f/ Transport Laver 3-66

= A Z %Jtﬁ:? u ﬁnﬂﬂz%‘é+

Nl U, Department of Comput e and Information Eng

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Recelver action
Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . Indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment startsat lower end of gap

WMN
ﬁ/ Transport Laver 3-67

Fast Retransmit

O Time-out period often
relatively long:
O long delay before
resending lost packet

O Detect lost segments via
duplicate ACKs.

O Sender often sends many
segments back-to-back

O If segment is lost, there
will likely be many
duplicate ACKs.

=

Transport Laver

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

O If sender receives 3
ACKSs for the same data,
it supposes that segment
after ACKed data was
lost:

O fast retransmit: resend
segment before timer
expires

3-68

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

)
/ \

a duplicate ACK for fast retransmit
already ACKed segment

WMN
ﬁ/ Transport Layer 3-69

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultip]exing O reliable data transfer

7 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

0 3.4 Principles of reliable
data transfer

.
=

Transport Laver 3-70

TCP Flow Control

3 receive side of TCP

connection has a receive

buffer:
k— RevWindow —

77
///

7
////

data from
IF

b RevBuffer ———#

O app process may be

slow at reading from
buffer

2

application
process

C Az Eatnd (aEnIeEses

N] U, Department of Computer Science and Information Enginesring

- flow control

sender won't overflow
receiver’s buffer by
transmitting too much,
too fast

0 speed-matching service:
matching the send rate

to the receiving app's
drain rate

Transport Laver 3-71

Iﬂ;.%it;‘:.? h ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

TCP Flow control: how it Works

-||— RevWindow —|+

O Rcvr advertises spare

7 / Vi . :
data from A 5 / / application room by lnCIU.dlng Value
¥ Precess of RevWindow in
7 / 7 / segments
b—— RevBuffer ———#
3 Sender limits unACKed
(Suppose TCP receiver data to RcvWindow
discards out-of-order O guarantees receive buffer
segments) doesn't overflow
O spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]

WMN
f/ Transport Laver 3-72

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultip]exing O reliable data transfer

3 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

0 3.4 Principles of reliable
data transfer

@
=

Transport Laver 3-73

& = %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ
TCP Connection Managemeﬁﬁ ot o o S ot 1
Recall: TCP sender, receiver Three way handshake:
establish "connection” before
exchanging data segments Step 1: client host sends TCP SYN
3 initialize TCP variables: segment to server
O seq. #s O specifies initial seq #
O buffers, flow control info O no data
(e.g. RevWindow) Step 2: server host receives SYN,
O client: connection initiator replies with SYNACK segment

Socket clientSocket = new

o v O server allocates buffers
Socket(*"hostname",''port

number™) : O specifies server initial seq. #

O server: contacted by client Step 3: .Chent. receives SYNACK,
_ _ replies with ACK segment,
Socket connectionSocket = SYN . .
welcomeSocket.accept(); which may contain data

\\\\\\\\\‘

SYN/ACK

VA —
TAGK—

Transport Laver 3-74

:
=

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

NIJL|_Hn1L|L1|:| e and

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

WMN
ﬁ/ Transport Laver

close

@ client

close

Q‘ timed wait

FIN

\

Information Eng

server @

close

3-75

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK. .
closing
FIN

O Enters "timed wait" -
will respond with ACK

to received FINs / :
closing
AC

Step 4: server, receives ACK.
Connection closed.

Note: with small modification, =
) o closed
can handle simultaneous GE)
FINs. i=
closed ~

WMN
:m/ Transport Layer 3-76

TCP Connection Management (cont

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

wiait 30 seconds

CLOSED

TIME_WAIT

Fy

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nathing

TCP client

liftecycle

send SYN

client application
initiates a TCP connection

SYN_SENT

¥

ESTABLISHED

receive SVMN & ACK
send ACK

FIN_WAIT_1

client application
initiates close connection

send FIM

receive ACK
send nothing

CLOSED

LAST_ACK

&

send FIN

CLOSE_WAIT

receive FIM
send ACK

Transport Laver

TCP server
lifecycle

server application
creates alisten socket

LISTEN

¥

receive S
send SYM & ACK

SYN_RCYD

ESTABLISHED

receive ACK
send nothing

3-77

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

0 3.4 Principles of reliable
data transfer

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
O flow control

O connection management

O 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

WMN
ﬁ/ Transport Layer 3-78

= E 2 %;tﬁ#u ﬁnﬂﬂz +~

NIJL|_l it of Comput

Principles of Congestion Control

Congestion:

J informally: "too many sources sending too much data
too fast for network to handle”

O different from flow control!
O manifestations:
O lost packets (buffer overflow at routers)
O long delays (queueing in router buffers)
0 a top-10 problem!

WMN
ﬁ/ Transport Layer 3-79

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

Causes/ costs of congestion: scenario 1

Host A

>
o
=1

A . original data

3 two senders, two
receivers

unlimited shared
output link buffers

, 0 large delays
when congested
7 maximum

‘ achievable

throughput
{ ﬁ/ Transport Layer 3-80

3 one router, infinite

buffers
[no retransmission

C/24

7Lou’r
delay

F Az g2 2 (EATRSR

NTPU, Department of Computer Science and Information Engineering

Causes/ costs of congestion: scenario 2

O one router, finite buffers
O sender retransmission of lost packet

Host A

A, . original data Aout

A, . original data, plus A
retransmitted data

Host B finite shared output

link buffers

(WM?
ot Transport Laver 3-81

CFAZEn LB (EATESR

NTPU, Department gi L’ﬁl'l‘lJlQi:iiC"lCE and Information Engineering

Causes/ costs of congestion: scenario

3 al : = dput
always kin }bouﬂgoo put)

7 “perfect” retransmission only when loss:), > A,

in out
7 retransmission of delayed (not lost) packet makes), larger (than
18
perfect case) for same),
out
RI2 f---mmmmmmmmmmmmco oo : R/2 f---mmmmmmmmmmmooooo oo ; R/2
_ _ RB[-=mmmmmmmmmmmmmmm o= i _
(<8 &8 &g VN I
7\;” R/2 k?n R/2 7\;” R/2
a. b. C.

“costs” of congestion:
O more work (retrans) for given “goodput”
O unneeded retransmissions: link carries multiple copies of pkt

WMN
ﬁ/ Transport Layer 3-82

S

&
i
!
%‘

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

Causes/ costs of congestion: scenario 3

[four senders

Q: what happens as A,

and A'increase ?
O timeout/retransmit In

[multihop paths n

Host A ..
> A, . original data A

out

A", . original data, plus
retransmitted data

finite shared output
link buffers

Host B

=
=

.
s

Transport Laver 3-83

@A%Jt;‘:? {,., ﬂ‘ﬂIF’@—f*

NlJD|.l ent of Comput iation Engin

Causes/ costs of congestion: scenario 3

C/2 :

3 e
<

k!
N
Another “cost” of congestion:

O when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Laver 3-84

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

O no explicit feedback from O routers provide feedback to
network end systems

O congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECDbit, TCP/IP ECN,

O approach taken by TCP ATM)

O explicit rate sender
should send at

WMy
ﬁ/ Transport Layer 3-85

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

Nl U, Department of Comput e and Information Eng

Case study: ATM ABR congestion control

ABR: available bit rate:

7 “elastic service"

O if sender's path
“underloaded":

O sender should use
available bandwidth

O if sender’s path congested:

O sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

O sent by sender, interspersed
with data cells

O bits in RM cell set by switches
(“network-assisted)

O NI bit: no increase in rate
(mild congestion)

O CI bit: congestion indication

O RM cells returned to sender by
receiver, with bits intact

Transport Laver 3-86

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Case study: ATM ABR congestion control

I RM cells
source |:| data cells destination

Switch Switch

)

O two-byte ER (explicit rate) field in RM cell

O congested switch may lower ER value in cell

O sender’ send rate thus minimum supportable rate on path

O EFCI bit in data cells: set to 1 in congested switch

O if data cell preceding RM cell has EFCI set, sender sets CI bit in
returned RM cell

WMN
ﬁ/ Transport Laver 3-87

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

Chapter 3 outline

0 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultip]exing O reliable data transfer

3 3.3 Connectionless O flow control

transport UDP O connection management
3 3.6 Principles of
congestion control

O 3.7 TCP congestion
control

0 3.4 Principles of reliable
data transfer

@
=

Transport Laver 3-88

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

TCP Congestion Control

O end-end control (no network How does sender
assistance) perceive congestion?
3 sender limits transmission: 3 loss event = timeout or 3
LastByteSent-LastByteAcked duplicate acks
< CongWin 3 TCP sender reduces
O Roughly, rate (CongWin) after
- CongWin tec/ loss event
RTT ytes/sec three mechanismes:

o AIMD

0 CongWin is dynamic, function of
O slow start

perceived network congestion
O conservative after

timeout events

WMN
:m/ Transport Layer 3-89

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

'I'(:I’ ﬁ IMD NIJLmln nt of Comput e and Information Eng

multiplicative decrease: additive increase: increase
cut CongWin in half CongWin by 1 MSS
after loss event every RTT in the
absence of loss events:
probing

24 Kbytes —

16 Kbytes —

8 Kbytes —

» time

Long-lived TCP connection

WMN
ﬁ/ Transport Layer 3-90

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

TCP Slow Start

7 When connection begins, 0 When connection begins,

CongWin =1 MSS Increase rate

o Example: MSS = 500 bytes F.Xpolnentlally fast until
& RTT = 200 msec 1rst loss event

O initial rate = 20 kbps

0 available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

=

Transport Laver 3-91

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

TCP Slow Start (more)

0 When connection @Hw A Host B @
begins, increase rate

exponentially until first é W
loss event: f
O double CongWin every %’
RTT
O done by incrementing
CongWin for every ACK Our segments
received

3 Summary: initial rate is
slow but ramps up
exponentially fast time

WMN
ﬁ/ Transport Layer 3-92

|§] %Jtﬁ.?‘ &_ gnﬂI*E

NIJL|.l nt o

Refinement

— Philosophy:
O After 3 dup ACKs:

- e 3 dup ACKs indi
O CongWin is cut in half up ACKs indicates

. network capable of
O window then grows delivering some segments

linearly e timeout before 3 dup
O But after timeout event: ACKs is “more alarming”

O CongWin instead set to 1
MSS;

O window then grows
exponentially

O to a threshold, then
grows linearly

WMN
ﬁ/ Transport Layer 3-93

F Az Enx8 ERTRSR

Refine ent (Ore) NTPU, Department of Computer Science and Information Engineering
Q: When should the
exponential
. . 14—
increase switch to - TCP Series 2 Reno
linear? E ol
- D
A: When CongWin ¢ goeshold 7 __
gets to 1/2 of its 2 e i
B4
V.alue before = TCP Series 1 Tahoe
timeout. .
0 [| | [| | | |

. 0123-&155?3‘_%1“[:]1'11'21'31'41'5
Implementatlon: Transrrission round

3 Variable Threshold

3 At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

WMN
:m/ Transport Layer 3-94

Transmission round

r T 9 TTTTY

Threshold

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

TCP Series 2 Reno

Threshold

TCP Series 1 Tahoe

i

- 11711 1 1 1 1" /]
54 5 6 7 8 9 10111213 14 15

Transrrission round

Transport Laver 3-95

= # 2 %‘Jtﬁ#\., ﬁnﬂﬂz —f~

NIJL|.l nt o

Summary: TCP Congestion Control

3 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

3 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

3 When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

=

Transport Laver

3-96

S

TCP sender congestion contr

F Az »fm:.ﬁ (EaTiRs

PU, Departme n

Event State TCP Sender Action Commentary

ACK receipt | Slow Start | CongWin = CongWin + MSS, Resulting in a doubling of
for previously | (SS) If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
ACK receipt | Congestion | CongWin = CongWin+MSS * Additive increase, resulting
for previously | Avoidance | (MSS/CongWin) in increase of CongWin by
unacked (CA) 1 MSS every RTT
data
Loss event SSorCA Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
Timeout SSorCA Threshold = CongWin/2, Enter slow start

CongWin =1 MSS,

Set state to “Slow Start”
Duplicate SSorCA Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

ﬁ/

Transport Laver

OmpL l_rll e and Information L|u|l_l_||n=|

3-97

i =~ 'i_ ?_ ae s =) 77
N B Z B LB EATESRR
NTPU, Department of Computer Science and Information Engineering

TCP throughput

0 What's the average throughout to TCP as a
function of window size and RTT?

O Ignore slow start

3 Let W be the window size when loss occurs.
O L. =2 Loss Rate

0 When window is W, throughput is W/RTT

3 Just after loss, window drops to W/2,
throughput to W/2RTT.

3 Average throughout: .75 W/RTT
o (W/RTT + W/2RTT)/2 > (1 + 0.5)/2* W/RTT

WMN
j/ Transport Layer 3-98

G Azinre (ENIRSR

ing

NTPU, Department

Average throughout: .75 W/RTT
TCP Futures verage throughou

0 Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

O Requires window size W = 83,333 in-flight segments
0 Throughput in terms of loss rate:

1.22-MSS
RTT~/L

0 =» L =210 Wow
O New versions of TCP for high-speed needed!

=

Transport Laver 3-99

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

TCP Fairness

Fairness goal: if K TCP sessions share same bottleneck

link of bandwidth R, each should have average rate
of R/K

TCP connection 1

TCP@ bottleneck

router
connection 2)
capacity R

WMN
ﬁy Transport Layer 3-100

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Why is TCP fair?

Two competing sessions:
0 Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

Global
Synchronization

Connection 2 throughput =

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Laver 3-101

Fairness (more)

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Fairness and UDDP

O Multimedia apps often

Fairness and parallel TCP
connections

do not use TCP O nothing prevents app from
o do not want rate opening parallel
throttled by congestion connections between 2
control hosts.

3 Instead use UDP:;

O pump audio/video at
constant rate, tolerate
packet loss

3 Research area:; TCP
friendly

=

7 Web browsers do this
O Example: link of rate R

supporting 9 connections;

O new app asks for 1 TCP, gets
rate R/10

O new app asks for 11 TCPs,
gets R/2 !

Transport Laver 3-102

Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending a
request?

[gnoring congestion, delay is
influenced by:

O TCP connection establishment

O data transmission delay

7 slow start

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Notation, assumptions:

3 Assume one link between
client and server of rate R

O S: MSS (bits)

3 O: object size (bits)

O no retransmissions (no loss,
no corruption)

Window size:

O First assume: fixed
congestion window, W
segments

0 Then dynamic window,
modeling slow start

WMN
ﬁy Transport Layer 3-103

Iﬂ;.%it;‘:.? h ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Fixed congestion Window (1)

First case:

WS/R > RTT +S/R: ACK fo
first segment in window
returns before window's

worth of data sent

delay = 2RTT + O/R

initiate TCP __

t S
COTTIECH 0T \1 MMM—_H%
e
fequest M_H_M..,m_ﬁm—""-__._w-—““
object W ——.
y SR *
| | mrr | R
1stack
tetars
time ¥ ¥ tine
at cliernt at. server
3-104

Transport Lavyer

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

Fixed congestion window (2)

initiate TCP
lzj;n?l:ctinn ‘\:t o
Second case: - }TT
J—
0 WS/R<RTT +S/R: wait T e
for ACK after sending | 77w S .
window's worth of data // stm
RTT

retuins

delay = 2RTT + O/R /‘\mmm
+ (K-1)[S/R + RTT - WS/R] //

it -
time
: ¥
at client at server

K= O/WS

WMN
f/ Transport Layer 3-105

TCP Delay Modeling: Slow Start\w(l 2B G RRTRIR

Now suppose window grows according to slow start

Will show that the delay for one object is:

Latency = 2RTT +%+ P[RTT +%}— (2° —1)%

where Pis the number of times TCP idles at server:
P=min{Q,K-1}

- where Q is the number of times the server idles
if the object were of infinite size.

-and K is the number of windows that cover the object.

WMN
ﬁy Transport Layer 3-106

, C Az iatr8 (EATESES
TCP Delay MOdellng: SIOW Startl -’(%)meu of Computer Science and Information Engineering

. initiate TCP
Delay components: niate T
e 2 RTT for connection —

estab and request request _|
* O/R to transmit object oblect 3 frstvindow
= SIR

e time server idles due

A
to SIOW start RIT second window
=2S/R
Server idles: N
P = min{K-1,Q} times tird window

»d
<

fourth window

Example: SV

* O/S =15 segments
* K =4 windows

° Q =7

e P=min{K-1,Q} =2

\4

\ complete

transmission

object
delivered

time at
time at server
client

€ WM%;
e Transport Laver 3-107

Server idles P=2 times

C A28 O ANTRER
TCP Delay Modeling (3) | o

%+ RTT = time from when server starts to send segment

until server receives acknowledgement

initiate TCP
connection
_ S . . . T
R e
R req_uest_>
object) .
first window
¢ =S/R
A

S k—1S + _ _] RTT
E+ RTT -2 R =idle time after the kth window

second window
=2S/R

third window
=4S/R

fourth window

P
delay :%+ 2RTT + > idleTime,

=8S/R
p=1
O S 1S

=—+2RTT + > [=+RTT -2""— !

R kz:l; [R R] object \ completg
delivered transmission
:9+2RTT +P[RTT +§]_(2P _1)§ _ time at
;F R R R tmsn&:t server

Transport Laver 3-108

@A%’Jtﬁ?‘ h ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput cience and Information Eng

TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K=min{k:2°S+2'S+A +2“'S >0}
=min{k:2°+2'+A +2“*>0/S}

=min{k : 2* -1> %}
=min{k :k > Iogz(%+l)}
=[|092(%+1)w

Calculation of Q, number of idles for infinite-size object,
is similar (see HW).

WMN
f/ Transport Layer 3-109

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

HTTP Modeling

O Assume Web page consists of:

O 1 base HTML page (of size O bits)

O M images (each of size O bits)
O Non-persistent HTTP:

O M+1 TCP connections in series

O Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
O Persistent HTTP:

O 2 RTT to request and receive base HTML file

O 1 RTT to request and receive M images

O Response time = (M+1)O/R + 3RTT + sum of idle times
O Non-persistent HTTP with X parallel connections

O Suppose M/ X integer.
O 1 TCP connection for base file

O M/ X sets of parallel connections for images.
O Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

WMN
ﬁy Transport Layer 3-110

HTTP Response time (in secon

& lﬁ;’;%ﬁ.% 2 (ENTIRBR

C‘S.'. r Science and Information Engineering

RTT =100 msec, O = 5 Kbytes, M=10 and X=5

201
18-
16+
14+
124
10+

E non-persistent

28
Kbps

B persistent

[parallel non-
persistent

100 1 10
Kbps Mbps Mbps
For low bandwidth, connection & response time dominated by

transmission time.

Persistent connections only give minor improvement over parallel

connections.

oy

Transport Laver 3-111

= Bz J:.?{.., AR TIRPR
HTTP Response time (in seccyn 53 e ns oman Ergner

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

|_:_‘
701
60 11
5011 _
E non-persistent

40 1
301 B persistent
7 [1 parallel non-
1011 persistent

O_‘

28 100 1 10
Kbps Kbps Mbps Mbps

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delayebandwidth networks.

Transport Laver 3-112

= # 2 %‘Jtﬁ#\., ﬁnﬂﬂz —f~

NIJL|.l nt o

Chapter 3: Summary

O principles behind transport
layer services:

O multiplexing,

demultiplexing

O reliable data transfer

O flow control Next:

O congestion control 7 leaving the network

J instantiation and “edge"” (application,

implementation in the transport layers)
Internet 7 into the network

o UDP “core"

o TCP

WMN
ﬁ/ Transport Layer 3-113

= # 2 %‘Jtﬁ#\., ﬁnﬂﬂz —f~

NIJL|.l nt o

Network Simulation

0 Using network simulator to simulate the
network operations

O It is very difficult to implement the network
operations

3 Well-Known Network Simulator
O OPNet
O QualNet

O Glomosim
O NS2 (Network Simulator 2)

=

Transport Laver 3-114

- __"- -
X AZF LB (CEATIERR
NTPU, Department of Computer Science and Information Engineering

A Simulation Scenario

3 3 End Nodes
0S51,S2,D

31 Immediate Node
OR

3 2 Network Flows

O UDP - CBR : 0.1 sec ~ 4.5 sec (background traffic)
O FIP - TCP:1.0sec ~4.0 sec

WMN
ﬁy Transport Layer 3-115

e E Az 1% EATRER

NTPU, Department of Computer Science and Information Engineering

S s
! % CBR \ ;
N | S ' - null
i Ud | — — q o |

01 10 40 45
ey 3116

Transport Laver

Iﬁ];.%.itﬁ.ﬁ h ﬁ‘ﬂIF@—f«

NIJL|_l it of Comput

Measurement

0 End-to-End Delay
3 Jitter

3 Packet Loss

O Throughput

WMy
ﬁ/ Transport Layer 3-117

NS2 Demonstration

Transport Lavyer

ﬁh%itﬁ.?{b ﬂ‘RIF$+

NlJD|.l ent of Comput d Information Engin

3-118

