CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

Chapter 2 il -
Application Layer

networking Qﬁ .

James F. Kurose
Keith W. Ross

“4 # o rie-
Prof. Yuh-Shyan Chen Computer Networking: A

Department of Computer Science and Top Down Approach
Featuring the Internet,

Information Engineering 3rd edition.

National Taipel University Jim Kurose, Keith Ross

March 2007 Addison-Wesley, July
2004.

Application Laver 2-1

= # 2 ri‘it;‘:?u ﬁnﬂﬂz —f~

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
3 2.2 Web and HTTP with TCP
0 23 FIP 0 2.8 Socket programming
3 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WMN
ﬁ/ Application Laver 2-2

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Chapter 2: Application Layer

Our goals: O learn about protocols
O conceptual, by examining popular
implementation application-level
aspects of network protocols
application protocols o HTTP
O transport-layer o FIP
service models O SMTP / POP3 / IMAP
O DNS

O client-server
paradigm 0 programming network

applications
O socket API

O peer-to-peer paradigm

=

Application Laver 2-3

|§] %Jtﬁ.?‘ h gnﬂI*E

NIJL|_l it of Comput

Some network apps

3 E-mail O Internet telephone

3 Web O Real-time video

O Instant messaging conference

7 Remote login O Massive parallel
computing

0 P2P file sharing

3 Multi-user network
games

O Streaming stored video
clips

WMN
ﬁ/ Application Laver

_fn

2-4

F Az Enx8 ERTRSR

NTPU, Dl;'p:’lrll'l'lﬂl'll of ':_'C‘I'I"IJL.'.I;T Science and Information LI"ILJI"IL'IL'riI'Ig
Creating a network app
Write programs that
O run on different end systems e
and bl
O communicate over a ;
network. oo
O e.g., Web: Web server \
software communicates with , (/’ S~
browser software s
No software written for —r ——
. . applicatio
devices in network core — € arEpot
O Network core devices do not etuork data link
(E)htysli(gll(5 g physical

function at app layer

O This design allows for rapid
app development

WMN
:m/ Application Laver 2-5

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

O 2.1 Principles of 0 2.6 P2P file sharing
network applications 7 2.7 Socket programming
3 2.2 Web and HTTP with TCP
0 23 FIP 0 2.8 Socket programming
A 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WMN
:m/ Application Laver 2-6

- _". -
E Az LB (FEATRERR
NTPU, Department of Computer Science and Information Engineering

Application architectures

3 Client-server
3 Peer-to-peer (P2P)
O Hybrid of client-server and P2P

-

Application Laver 2-7

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

Client-server architecture

Server.
O always-on host
O permanent I’ address
O server farms for scaling

clients:

O communicate with
server

O may be intermittently
connected

O may have dynamic IP
addresses

O do not communicate
directly with each other

WHMN
ﬁy Application Laver 2-8

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

Pure P2P architecture

a

no always on server

a

arbitrary end systems directly
communicate

O peers are intermittently
connected and change IP
addresses

O example: Gnutella

O http:/ /en.wikipedia.org/wiki
/Gnutella

Highly scalable

But difficult to manage

WHMN
ﬁy Application Laver 2-9

CAzEn B ((CEATESR

http:/ /en.wikipedia.org/ wiki/Gnut
ella

A Gnutella - Wikipedia, the free encyclopedia - Microsoft Internet Explorer - 17X
BEE REE) iR\ REEFA) TED #REH) ar

OF—FH - © RHREG P PEHESERHNST @ 3% @ - UKA 3

{E5-(D) @ http://en.wikipedia.org/wiki/Gnutella eRE EE @
7 _

4 sign in / create account r.
article discussion | | editthis page | | history M

Your continued donations keep Wikipedia running!

WIKI}EDIA Gnutella

i T_m SRR | From Wikipedia, the free encyclopedia
_navigation

|
= Main page N . - ——
. Comepmsg This article or section does not adequately cite its references or sources.

= Eeatred conan Please help improve this arlicle by adding citations to reliable sources. (help, get involved!)

= Current events This article has been tagged since January 2007.

= Random ariicle

Gnutella (pronounced: /nu'tels/ with a silent g, or alternatively /gnu'tela/, following R. M. Staliman's pronunciation of GNU) is a file sharing network. As of December 2005,
Gnutella is the third-most-popular file sharing network on the Internet, following eDonkey 2000 and FastTrack. Gnutella is thought to host on an average of approximately 2.2
million users, although around 750,000-1,000,000 are on-line at any given moment.["]

_interaction

= About Wikipedia
= Community portal
= Recent changes Contents [hide]
= Contact us

= Make a donation

= Help

1 History

2 How it works

3 Protocol features and extensions
search 4 Software

| | 5 See also

& External links

6.1 Papers on Gnutella and file sharing

toolbox

= What links here
= Related changes

7 References

= Upload file History [edit]
= Special pages
= Printable version The first client was developed by Justin Frankel and Tom Pepper of Nullsoft in early 2000, soon after the company's acquisition by AOL. On March 14, the program was macde
= Permanent link available for download on Nullsoft's servers. The event was prematurely announced on Slashdot, and thousands downloaded the program that day. The source code was to gt
ERE - | W 3 % | 1| B FIEAELE http:ffen.wikipedia.ore/ F (SR (7]
&) P mmEs

U e G AEE.. | chap2 A Gnutella - ... | i 21fE4CEE.. s 4R 02:10

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Hybrid of client-server and P2P

Napster
O File transfer P2

O File search centralized:
» Peers register content at central server
» Peers query same central server to locate content

Instant messaging
O Chatting between two users is P2P

O Presence detection/location centralized:

- User registers its IP address with central server when it
comes online

« User contacts central server to find IP addresses of

buddies

WHMN
ﬁy Application Laver 2-11

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

Nl U, Department of Comput e and Information Eng

Processes Communicatmg

Process: program running Client process: process
within a host. that initiates

7 within same host, two communication
processes communicate Server process: process
using inter-process that waits to be
communication (defined contacted
by OS).

O processes in different O Note: applications with
hosts communicate by P2P architectures have
exchanging messages client processes & server

processes

WHMN
ﬁy Application Laver 2-12

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

Sockets (is the interface between application layer and the
transport layer within a host)

. host or host or
O process sends/receives servor server
messages to/from its @
socket controlled by

& app developer
O socket analogous to door

O sending process shoves

message out door TCP with S TCP with
. . nterne buff ,
O sending process relies on buffers, | uffers
: variables variables
transport infrastructure on
other side of door which 1o
: controlle
brings message to socket at by OS

recelving process

0 API (Application Programming Interface) (1) choice of
transport protocol; (2) ability to fix a few parameters (lots

@A}more on this later)
=/ 2-13

Application Laver

= # 2 %‘Jtﬁ#\., ﬁnﬂﬂz —f~

NIJL|.l nt o

Addressing processes

O For a process to receive O Identifier includes both

messages, it must have the IP address and port
an identifier numbers associated

3 A host has a unique32- with the process on the
bit IP address host.
(140.123.101.1 DNS- 0 Example port numbers:
Server) o HTTP server: 80

3 Q: does the IP address of O Mail server: 25
the host on which the 3 More on this later

process runs suffice for
identifying the process?

O Answer: No, many
processes can be running

wnyy Onsame host

Application Laver 2-14

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

App-layer protocol defmes

0 Types of messages Public-domain protocols:

exchanged, eg, request 1 defined in RFCs

& response messages 7 allows for

0 Syntax of message interoperability

types: what fields in A eg, HTTP, SMTP
messages & how fields ' '

are delineated

3 Semantics of the fields,
ie, meaning of
information in fields

Proprietary protocols:

O eg, KaZaA, Kuro, BT, e-
Donkey

3 Rules for when and
how processes send &
respond to messages

Application Laver 2-15

=

= # 2 %‘Jtﬁ#\., ﬁnﬂﬂz —f~

NIJL|.l nt o

What transport service does an app need?

Data loss Bandwidth
0 some apps (e.g., audio) can g gome apps (e.g.,
tolerate some loss multimedia) require

O other apps (e.g., file minimum amount of

transfer, telnet) require bandwidth to be

100% reliable data transfer “offective”

3 other apps (" elastic

Timing apps") make use of
7 some apps (e.g., whatever bandwidth
Internet telephony,

they get

interactive games)
require low delay to be
“effective”

=

Application Laver

2-16

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

Transport service requirements of common apps

Application Data loss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps Yes, 10U’s msec
video:10kbps-5Mbps

stored audio/video loss-tolerant same as above yes, few secs
interactive games]oss-tolerant few kbps up yes, 100’s msec
instant messaging no loss elastic yes and no

=

Application Laver 2-17

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Internet transport protocols services

TCP service:

O connection-oriented: setup
required between client and
server processes

O reliable transport between
sending and receiving process

3 flow control: sender won't
overwhelm receiver

O congestion control: throttle
sender when network
overloaded

O does not provide: timing,
minimum bandwidth
guarantees

UDP service:

O unreliable data transter
between sending and
recelving process

O does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is there a
UDP?

WHMN
ﬁy Application Laver 2-18

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer = FTP [RFC 959] TCP
streaming multimedia proprietary TCP or UDP
(e.g. RealNetworks)
Internet telephony proprietary
(e.g., Dialpad) typically UDP

=

Application Laver

2-19

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications A 2.7 Socket programming

O app architectures with TCP
O app requirements 0 2.8 Socket programming

0 2.2 Web and HTTP with UDP

3 2.4 Electronic Mail A 2.9 Building a Web server
o SMTP, POP3, IMAP

3 2.5 DNS

WHMN
ﬁy Application Laver 2-20

= # 2 ri‘it;‘:?u ﬁnﬂﬂz —f~

NIJL|_l it of Comput

Web and HTITP

First some jargon(r~ E—FI)

0 Web page consists of objects

3 Object can be HTML file, JPEG image, Java applet,
audio file,...

0 Web page consists of base HTML-file which includes
several referenced objects

O Each object is addressable by a URL
0 Example URL:

www . someschool .edu/someDept/pic.gif

S—— S —
——— ——

host name path name

WHMN
ﬁ/ Application Laver 2-21

HTTP overview

HTTP: hypertext transter
protocol

7 Web's application layer
protocol

3 client/server model

O client: browser that
requests, receives,
“displays” Web objects

O server: Web server sends
objects in response to
requests

O HTTP 1.0: RFC 1945
O HTTP 1.1: RFC 2068

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

NTH JL|_’|ln it of Comput

e and Information Eng

PC running /%
Explorer 1p

—

Server
running
Apache Web
server

Mac running
Navigator

WMN
:m/ Application Laver 2-22

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

HTTP overview (Continued)

Uses TCP: HTTP is "stateless”
3 client initiates TCP connection O server maintains no
(creates socket) to server, port information about past
80 client requests
O server accepts TCP connection 4
: aslde —
from client Protocols that maintain "state”
O HTTP messages (application- are complex!
layer protocol messages) O past history (state) must be

exchanged between browser

(HTTP client) and Web server . ’
(HTTP server) O if server/client crashes,

their views of “state” may be
inconsistent, must be
reconciled

maintained

3 TCP connection closed

WMN
:m/ Application Laver 2-23

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

NIJL|_l it of Comput

HITTP connections

Nonpersistent HI'TP Persistent HTTP

O At most one object is 0 Multiple objects can be
sent over a TCP sent over single TCP
connection. connection between

9 HTTP/1.0 uses client and server.
nonpersistent HTTP 0 HTTP/1.1 uses

persistent connections
in default mode

WHMN
ﬁy Application Laver 2-24

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Nonpersistent HTTP
(contains text,

Suppose user enters URL references to 10
www . someSchool . edu/someDepartment/home. 1ndex jpeg images)

Ta. HTTP client initiates TCP

connection to HTTP server
1b. HTTP server at host
(process) at www.someSchool.edu waiti
www.someSchool.edu on port 80 ' o watling
for TCP connection at port 80.
“accepts” connection, notifying
client

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket. Messq&e\?i HTTP server receives request

indicates that client wants objec message, forms response message

SomeDepartment/home.inde‘X/ containing requested object, and

sends message into its socket

€ W]\ N
ﬁ/ Application Laver 2-25

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

NI U, Department of Comput

Nonpersistent HTTP (Cont.)

time

e and Information Eng

/ 4. HTTP server closes TCP

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each of 10
jpeg objects

Application Laver

connection.

2-26

Response time modehng

Round Trip Time (RTT)

Definition of RTT: time to
send a small packet to
travel from client to
server and back.

Response time:

3 one RTT to initiate TCP
connection

3 one RTT for HTTP
request and first few
bytes of HTTP response to
return

3 file transmission time
total = 2RTT+transmit time

2

initiate TCP

connection

RTTX

\ time to
} transmit
. file

received

file

RTIX

file

WMN
ﬁy Application Laver

\4

time

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

Department of Col

time

2-27

2

Persistent HI'TP

Nonpersistent HT'TP issues:

O requires 2 RTTs per object

[OS must work and allocate
host resources for each TCP
connection

O but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HITP

O server leaves connection open
after sending response

O subsequent HTTP messages
between same client/server
are sent over connection

Fazinr2 8aTe

NTPU, Department of Computer Science and Information Eng

Persistent without pipelining:

O

O

client issues new request
only when previous
response has been received

one RTT for each referenced
object

Persistent with pipelining:

O
O

default in HTTP/1.1

client sends requests as soon
as it encounters a referenced
object

as little as one RTT for all the
referenced objects

Application Laver

B

neering

2-28

ﬁ],z:.%it;‘:.? h_ ﬂ‘ﬂIF’@—f*

Nl U, Department of Comput e and Information Eng

HTTP request message

O two types of HTTP messages: request, response

O HTTP request message:
O ASCII (human-readable format)

request line

(GET, POST, GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool .edu
User-agent: Mozillas4.0

header | connection: close

lines | Accept-language - Fr

Carriage return
g /’/v(extra carriage return, line feed)
line feed
indicates end
of message

WMN
ﬁ/ Application Laver 2-29

Iﬁl,ﬁ.%itﬁ.?{f

Nl._IDpL it of Comput

HTTP request message: general format

F | request
line

header
ines

Entity Body

Application Laver

‘RIF’@—%

iation Engin

2-30

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

NIJL|_l it of Comput

Uploading form input

Post method:
0 Web page often
includes form input URL method:
O Input is uploaded to 0 Uses GET method
server in entity body O Input is uploaded in
URL field of request
line:

www . somesite.com/animalsearch?monkeys&banana

WHMN
ﬁy Application Laver 2-31

Method types

HTTP/1.0
9 GET

7 POST
7 HEAD

O asks server to leave
requested object out of
response

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

HTTP/1.1

3 GET, POST, HEAD
d PUT

O uploads file in entity
body to path specified in
URL field

O DELETE

O deletes file specified in
the URL field

WHMN
ﬁy Application Laver 2-32

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

HTTP response message

status line
(protocol

status Code\‘ HTTP/1.1 200 OK

status phrase)

header

lines

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998
Content-Length: 6821

Content-Type: text/html

dam,egq./////” data data data data data ...

requested
HTML file

Application Laver 2-33

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

HTTP response status codes

In first line in server->client response message.

A few sample codes:

200 OK
O request succeeded, requested object later in this message
301 Moved Permanently

O requested object moved, new location specified later in this
message (Location:)

400 Bad Request
O request message not understood by server

404 Not Found

O requested document not found on this server

505 HTTP Version Not Supported

WMN
ﬁ/ Application Laver 2-34

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Trying out HT'TP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |Opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
Anything typed in sent

to port 80 at cis.poly.edu

2. Type ina GET HTTP request:

GET /~ross/ HTTP/1.1 By typing this in (hit carriage
Host: cis.poly.edu return twice), you send

this minimal (but complete)
| GET request to HTTP server

3. Look at response message sent by HI'TP server!

WHMN
ﬁy Application Laver 2-35

Fazinr2 8aTe

NTPU, Department of Computer Science and Information Eng

User-server state: cookies

Many major Web sites use = Example:

cookies Q
Four components:

1) cookie header line in the
HTTP response message

O

2) cookie header line in
HTTP request message

3) cookie file kept on user's
host and managed by
user's browser

4) back-end database at
Web site

=

Application Laver

Susan access Internet
always from same PC

She visits a specific e-
commerce site for first
time

When initial HTTP
requests arrives at site,
site creates a unique ID

and creates an entry in
backend database for ID

2R

neering

2-36

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Cookies: keeping "state” (cont.)

Cookie file
ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

Cookie file
amazon: 1678
ebay: 8734

P

P

P

=

—

client

server
usual http request msg | server d@%ﬁp |
usual http response + [creates ID %%e 2 s,
Set-cookie: 1678 1678 for user N %G”d

usual http request msg

cookie: 1678

> o (o
— specific

usual http response msg

usual http request msg

cookie: 1678

usual http response msg

Application Laver

cookie-

action

cookie-

| spectific

action

2-37

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

NTH JL|_’|ln it of Comput

Cookies (continued)

What cookies can bring:

3 authorization
O shopping carts
7 recommendations

O user session state (Web
e-mail)

aside

Cookies and privacy:

3 cookies permit sites to
learn a lot about you

0 you may supply name
and e-mail to sites
O search engines use

redirection & cookies to
learn yet more

O advertising companies
obtain info across sites

e and Information Eng

WMN
:m/ Application Laver

2-38

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Web caches (proxy server)

Goal: satisfy client request without involving origin server

[user sets browser: Web origin
accesses via cache server

[browser sends all HTTP

requests to cache . © @7
O object in cache: cache . %Y on=®

returns object

O else cache requests object
from origin server, then
returns object to client

client

origin
server

WMN
ﬁ/ Application Laver 2-39

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

More about Web Cachmg

O Cache acts as both clientand ~ Why Web caching?

SETver 7 Reduce response time for
O Typically cache is installed client request.

by ISP (university, company, 5 Reduce traffic on an

residential ISP) institution's access link.

O Internet dense with caches
enables "poor"” content
providers to effectively

deliver content (but so does
P2P file sharing)

WHMN
ﬁy Application Laver 2-40

Caching example

Assumptions

O average object size = 100,000
bits

O avg. request rate from
institution's browsers to origin
servers = 15 requests per
second.

O delay from institutional router
to any origin server and back to
router =2 sec

Consequences

3 wutilization on LAN =15%

O utilization on access link = 100%

O total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

S

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

origin
@\ servers
public

Internet _@

==

1.5 Mbps
access link

=N

institutional

HEIEI $ 10 Mbps LAN
Ty

institutional
cache

N
ﬁ/ Application Laver 2-41

E AZEn LB (CEATESR
tment of Computer Science and Information Engineering

NTPU, Depar

Cont.

O The traffic intensity on the LAN
O (15 requests/sec) * (100 kbits/request)/ (10
Mbps)= 0.15
O The traffic intensity on access link
O (15 requests/sec) * (100 kbits/request)/ (1.5
Mbps)=1
3 As the traffic intensity approaches 1, the
delay on a link becomes very large and grows
without bound

2

Application Laver 2-42

CFAZEn LB (EATESR

NTPU, Department of Computer Science and Information Engineering

Caching example (cont)

’ . .

: : origin
Possible solution @ H’ @ serv%rs
O increase bandwidth of access @\ .

link to, say, 10 Mbps public _@
Internet
Consequences
O utilization on LAN =15% =
O utilization on access link = 15%
0 Total delay = Internet delay + 1gcﬁ?ifnk
access delay + LAN delay
= 2 sec + msecs + msecs mStliqulr(lal @
networ
3 often a costly upgrade | ! !10 R AN
institutional
cache

WMN
ﬁ/ Application Laver 2-43

Caching example (cont)

Install cache

O

suppose hit rate is .4 @\

Consequence

O

O

O

=

40% requests will be satisfied
almost immediately

60% requests satisfied by
origin server

utilization of access link
reduced to 60%, resulting in
negligible delays (say 1

institutional

TS $ 10 Mbps LAN

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

public
Internet _@

==

1.5 Mbps
access link

N

origin
servers

gl = |

msec)

total avg delay = Internet
delay + access delay + LAN
delay = .6%(2.01) secs +
milliseconds < 1.4 secs

Application Laver

YyYY

institutional
cache

2-44

= Az %‘Jtﬁ:.%f‘\., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.ln1L| omput e and Information Eng

Cont.

O The traffic intensity on the access link is
reduced from 1.0 to 0.6

O Typically, a traffic intensity less than 0.8
corresponds to a small delay.

O Average delay
* 0.4 * (0.01 seconds) + 0.6 * (2.01 seconds) < 1.2 secs

@
=

Application Laver 2-45

Conditional GET

7 Goal: don't send object if cache
has up-to-date cached version

O cache: specify date of cached
copy in HTTP request
If-modified-since: <date>
O server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not Modified

@
=

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

cache

—)

HTTP request msg
If-modified-since: <date>

server
" object
not

HTTP response
“] HTTP/1.0
304 Not Modified

— modified

HTTP request msg

If-modified-since: <date>

HTTP response
— HTTP/1.0 200 OK

<data>

|

Application Laver

object
modified

2-46

" E] 2 %;tﬁ#u ﬁnﬂﬂz +~

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
3 2.2 Web and HTTP with TCP
0 2.3 FIP 0 2.8 Socket programming
3 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WHMN
ﬁ/ Application Laver 2-47

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

FTP: the file transfer protocol

user
at host

FTP
user

interface

FTP

file transfer

client

'@{(‘)ml tile
system

3 transfer file to/from remote host

A client/server model

\ 4

FTP
server

A

@

remote file
system

O client: side that initiates transfer (either to/from remote)

O server: remote host
3 ftp: RFC 959
O ftp server: port 21

Application Laver

2-48

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

FTP: separate control, data connections

TCP control connection
O FTP client contacts FTP server port 21

at port 21, specifying TCP as ’ n
transport protocol _ ”
. . o TCP data connection
O Client obtains authorization FIP port 20 FTP
over control connection client server

3 Client browses remote
O Server opens a second TCP

directory by sending 3 . f
commands over control ata lrfomér.llec’uom to transter
connection. another file.

. 11
3 When server receives a 3 Control connection: out of

command for a file transfer, the band"

server opens a TCP data O FTP server maintains “state":

connection to client current directory, earlier
authentication

O After transferring one file,
server closes connection.

=

Application Laver 2-49

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

FTP commands, responses

Sample commands:

O

a d

=

sent as ASCII text over
control channel

USER username
PASS password

LIST return list of file in
current directory

RETR fi1lename retrieves
(gets) file

STOR fi1lename stores
(puts) file onto remote host

Sample return codes

O status code and phrase (as in
HTTP)

0 331 Username OK,
password required

O 125 data connection
already open;
transfer starting

0 425 Can’t open data
connection

3 452 Error writing
file

Application Laver 2-50

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 23 FIP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WMN
:m/ Application Laver 2-51

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

outgoing

message queue

Electronic Mail

[1 user mailbox

slr I\
. /i user
Three major components: | |agent
7 user agents mail e
. server v/
3 mail servers agen
. | N Sl
7 simple mail transfer protocol: oooool SMTP ,
\ mail alr [
SMTP 1 server | [user
SMTP agent
User Agent _ / 00000
J ak.a. "mail reader” J' [SMTP ik,
. . . . 1 user
O composing, editing, reading e /
. server
mail messages
5 Ak
O e.g., Eudora, Outlook, elm, 00000] | user
Netscape Messenger Ak |2gent
. . . user
O outgoing, incoming messages agent

stored on server

=

Application Laver

2-52

CFAZEn LB (EATESR

NTPU, Department of Computer Science and Information Engineering

Electronic Mail: mail servers

alr

Mail Servers user
. . . . B agent
O mailbox contains incoming —— &1 [Y
messages for user | server |, —
J message queue of outgoing SMTP ™
(to be sent) mail messages JOLL NG| el | o,
O SMTP protocol between mail T il
P . SMTP agent
servers to send email _ / 00000
messages l M SMTP ATk

O client: sending mail server Tl / user
agent

O “server": receiving mail server

server =1 [
OOCUH] | user
Ak [agent
user
agent

WMN
ﬁ/ Application Laver 2-53

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

Nl U, Department of Comput e and Information Eng

Electronic Mail: SMTP [RFC 2821]

O uses TCP to reliably transfer email message from client to
server, port 25

a

direct transfer: sending server to receiving server

Q

three phases of transfer
O handshaking (greeting)
O transfer of messages
O closure
O command/response interaction
O commands: ASCII text
O response: status code and phrase

0 messages must be in 7-bit ASCII

WHMN
ﬁy Application Laver 2-54

: : C A2ixe ARTEER
Scenario: Alice sends message to Bob™

1) Alice uses UA to compose 4) SMTP client sends Alice’s
message and "to" message over the TCP
bob@someschool . edu connection

2) Alice's UA sends message to 5) Bob's mail server places the
her mail server; message message in Bob's mailbox
placed in message queue 6) Bob invokes his user agent to

3) Client side of SMTP opens read message

TCP connection with Bob's
mail server

i, 3 3
mail mail gl [g
— £

user
] user server server &,:a
S 101 G o0 IFOME
00000 K5)0

WMN
ﬁ/ Application Laver 2-55

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Sample SMTP interaction

2

DO OOOOLOLOLO!LOOW

- 220 hamburger.edu

- HELO crepes.fr

- 250 Hello crepes.fr, pleased to meet you
- MAIL FROM: <alice@crepes.fr>

: 250 alice@crepes.fr... Sender ok

- RCPT TO: <bob@hamburger.edu>

- 250 bob@hamburger.edu ... Recipient ok

- DATA

: 354 Enter mail, end with "." on a line by itself
: Do you like ketchup?

- How about pickles?

- 250 Message accepted for delivery
> QUIT
- 221 hamburger.edu closing connection

Application Laver 2-56

" E] 2 %;tﬁ#u ﬁnﬂﬂz +~

NIJL|_l it of Comput

Try SMTP interaction for yourself:

7 telnet servername 25

0 see 220 reply from server

3 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

O above lets you send email without using email client
(reader)

WHMN
ﬁ/ Application Laver 2-57

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

SMTP: final words

0 SMTP uses persistent Comparison with HTTP:

connections HTTP '
O SMTP requires message = - pu
(header & body) to be in 7- O SMTP: push

bit ASCII 3 both have ASCII
O SMTP server uses . command /response
CRLF.CRLF to determine interaction, status codes

end of message
O HTTP: each object

encapsulated in its own
response msg

O SMTP: multiple objects sent
in multipart msg

WMN
ﬁ/ Application Laver 2-58

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

Mail message format

SMTP: protocol for exchanging
email msgs

RFC 822: standard for text
message format:

O header lines, e.g.,

O To:

O From:

O Subject:

different from SMTP commgnds!
O body

O the "message"”, ASCII
characters only

e

<
<«

| ﬁ/ Application Lavyer

blank

line

2-59

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Message format: multimedia extensions

O MIME: multimedia mail extension, RFC 2045, 2056
O additional lines in msg header declare MIME content type

, From: alice(@crepes.fr
MIME version

To: bob@hamburger.edu
\\\\\\\\‘Subject: Picture of yummy crepe.
method used

MIME-Version: 1.0
to encode data

> Content-Transfer-Encoding: base64
: , >Content-Type: image/jpe
multimedia data/ P 9S/IPEY
type, subtype, base64 encoded data
parameter declaration

encoded data

WMN
ﬁ/ Application Laver 2-60

|§] %Jtﬁ.?‘ h gnﬂI*E

NI W, Department of Comput e and Information Engineering

Mail access protocols

SM_TI:Q SMIP A& access @ ~ £
= — agent =TS

protocol i
OO0 RRNEN
sender’s mail receiver’s mail
server server

O SMTP: delivery/storage to receiver's server
O Mail access protocol: retrieval from server
O POP: Post Office Protocol [RFC 1939]
» authorization (agent <-->server) and download
O IMAP: Internet Mail Access Protocol [RFEC 1730]
* more features (more complex)
* manipulation of stored msgs on server

O HTTP: Hotmail , Yahoo! Mail, etc.

WMN
ﬁ/ Application Laver 2-61

2

POP3 protocol

authorization phase —

3 client commands:
O user: declare username
O pass: password
O server responses
O +0K
o -ERR

transaction phase, CK

O list: list message numbers

O retr: retrieve message by
number

7 dele: delete
O quit

|u>r>c>u>u>r>c>u>u>r>u>u>u>c4|U3C>U>C>Uﬂ

Application Laver

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

+0OK POP3 server ready
user bob

+0K

pass hungry

+0K user successfully logged on

list
1 498
2 912

retr 1
<message 1 contents>

dele 1
retr 2
<message 1 contents>

dele 2

quit
+0OK POP3 server signing off

2-62

Fazinr2 8aTe

NTPU, Department of Computer Science and Information Eng

POP3 (more) and IMAP

More about POP3 IMAP
O Previous example uses 7 Keep all messages in
"download and delete” one place: the server
mode. O Allows user to organize
3 Bob cannot re-read e- messages in folders
mail if he changes client 5 AP keeps user state
7 "Download-and-keep": across sessions:
copies of messages on O names of folders and
different clients mappings between
3 POP3 is stateless across message IDs and folder
. name
sessions
WMN
ﬁ/ Application Laver

B

neering

2-63

" E] 2 %;tﬁ#u ﬁnﬂﬂz +~

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
3 2.2 Web and HTTP with TCP
0 23 FIP 0 2.8 Socket programming
3 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WMN
ﬁ/ Application Laver 2-64

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

DNS: Domain Name System

People: many identifiers:
O SSN, name, passport #

Internet hosts, routers:

O IP address (32 bit) - used
for addressing datagrams

O "name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:

O distributed database implemented
in hierarchy of many name
servers

O application-layer protocol host,
routers, name servers to
communicate to resolve names
(address/name translation)

O note: core Internet function,
implemented as application-
layer protocol

O complexity at network's

\\edgell

WHMN
ﬁy Application Laver 2-65

DNS

DN services

7 Hostname to IP address
translation

O Host aliasing

O Canonical and alias
names

0 Mail server aliasing

3 Load distribution

O Replicated Web servers:
set of IP addresses for
one canonical name

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Why not centralize DNS?
O single point of failure

3 traffic volume

7 distant centralized
database

[maintenance

doesn't scale!

Application Laver 2-66

Lo , , C 7 ls’*l' it g O ARTES
Distributed, Hierarchical Database

Root DNS Servers

/\

com DNS servers org DNS servers edu DNS servers
/ \ poly.edu umass.edu
yahoo.com amazon.com pbs.org
DNS servers DNS servers DNS servers DNS serversDNS servers

Client wants IP for www.amazon.com; 15t approx:
O Client queries a root server to find com DNS server

O Client queries com DNS server to get amazon.com
DNS server

O Client queries amazon.com DNS server to get IP
address for www.amazon.com

WMN
ﬁ/ Application Laver 2-67

CaAzin 8 ((EATESR

NTPU, Department of Computer Science and Information Engineering

DNS: Root name servers

O contacted by local name server that can not resolve name

O root name server:
O contacts authoritative name server if name mapping not known
O gets mapping
O returns mapping to local name server

a Verisign, Dulles, VA
¢ Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD

g US DoD Vienna, VA \
h ARL Aberdeen, MD i, R{RBKBHHCa, Stockholm (plus 3

other locations)

k RIPE London (also Amsterdam,

j Verisign, (11 locations)

m WIDE Tokyo
e NASA Mt View, CA

f Internet Software C. Palo Alt
CA (and 17 other locat

13 root name

servers worldwide

b USC-ISI Marina del Rey, CA
| ICANN Los Angeles, CA

Application Laver 2-68

@

= # 2 %‘Jtﬁ#u ﬁnﬂﬂz —f~

NIJL|.l nt o

TLD and Authoritative Servers

3 Top-level domain (TLD) servers: responsible for
com, org, net, edu, etc, and all top-level country
domains uk, fr, ca, jp.

O Network solutions maintains servers for com TLD
O Educause for edu TLD

O Authoritative DNS servers: organization's DNS
servers, providing authoritative hostname to IP
mappings for organization's servers (e.g., Web
and mail).

O Can be maintained by organization or service
provider

Application Laver 2-69

C Azin28(EATERRA
NTPU, Department of Computer Science and Information Engineering

Local Name Server

O Does not strictly belong to hierarchy
3 Each ISP (residential ISP, company,
university) has one.

O Also called “"default name server”

0 When a host makes a DNS query, query is
sent to its local DNS server

O Acts as a proxy, forwards query into hierarchy.

@
=

Application Laver

2-70

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

E xam Pl e root DNS server
]
, 2
O Host at cis.poly.edu /
wants IP address for 4 TL[? DRS server
gaia.cs.umass.edu 0 —— =
1

local DNS server
dns.poly.edu

1 8

authoritative (F{™ ~ f’ [’%ﬁ?ﬁ)
DNS server
requesting host dns.cs.umass.edu
cis.poly.edu @

gaia.cs.umass.edu

WHMN
ﬁ/ Application Laver 2-71

CFAZEn LB (EATESR

NTPU, Department of Computer Science and Information Engineering

Recursive queries

root DNS server

recursive query:

O puts burden (E1#%) of 2 3
name resolution on - 6
contacted name server n n TLD DNS server
O heavy load?

. t
iterated query: local DNIS server
dns.poly.edu 5((4

[contacted server |
replies with name of 1 ‘ ' g

server to contact n

["I don't know this @ authoritative DNS server
name, but ask this , dns.cs.umass.edu

requesting host

n"
server cis.poly.edu @

gala.cs.umass.edu

WMN
ﬁ/ Application Laver 2-72

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

DNS: caching and updating records

0 once (any) name server learns mapping, it caches
mapping
O cache entries timeout (disappear) after some
time
O TLD servers typically cached in local name
servers

* Thus root name servers not often visited

0 update/notity mechanisms under design by IETF

o RFC 2136
O http:/ /www.ietf.org/html.charters/dnsind-charter.html

=

Application Laver

2-73

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

O Type=A J Type=CNAME

O name is hostname O name is alias name for some

o value is IP address “cannonical” (the real) name
3 Type=NS www . ibm._com is really _

, . servereast.backup2.1bm.com
O name is domain (e.g. : :
. o value is cannonical name
00.com)

O valueisIP addressof Type=MX
authoritative name server

: . O value is name of mailserver
for this domain

associated with name

=

Application Laver 2-74

Az re (EATESR

NTPU, Department of Computer Science and Information Engineering

DNS protocol, messages

DNS protocol : guery and reply messages, both with
same message format

Identification flags T

msg header

3 identification: 16 bit # for
query, I‘eply to query uses | number of authority RRs | number of additional RRs
same #

number of questions number of answer ERs 12 bytes

O flags:
O query or reply
O recursion desired
O recursion available
O reply is authoritative

f WM§
Application Laver 2-75

Az re (EATESR

NTPU, Department of Computer Science and Information Engineering

DNS protocol, messages

identification

flags

Name, type fields

number of guestions

number of answer RRs

for a query

number of authority RRs

RRs in reponse
to query

records for N
authoritative servers

additional “helpful”

info that may be used

f WM§
Application Laver

number of additional RRs

2-76

C aziire (F ERAIERS

A
NTPU, Department of Computer Science and Information Engineering

Inserting records into DNS

J Example: just created startup "Network Utopia”
O Register name networkuptopia.com at a registrar (e.g.,
Network Solutions)

O Need to provide registrar with names and IP addresses of your
authoritative name server (primary and secondary)

O Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

O Put in authoritative server Type A record for

www.networkuptopia.com and Type MX record for
networkutopia.com

0 How do people get the IP address of your Web site?

WHMN
ﬁy Application Laver 2-77

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications A 2.7 Socket programming

O app architectures with TCP
O app requirements 0 2.8 Socket programming

3 2.2 Web and HTTP with UDP

3 2.4 Electronic Mail A 2.9 Building a Web server
o SMTP, POP3, IMAP

0 2.5 DNS

WHMN
ﬁy Application Laver 2-78

P2P file sharing

Example

O Alice runs P2P client
application on her
notebook computer

O Intermittently connects
to Internet; gets new 1P
address for each
connection

Asks for "Hey Jude"
Application displays
other peers that have
copy of Hey Jude.

I

@
=

= # 2 %Jt£¥ \., ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

3 Alice chooses one of the
peers, Bob.

3 File is copied from
Bob's PC to Alice's
notebook: HTTP

3 While Alice downloads,
other users uploading
from Alice.

3 Alice's peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

Application Laver 2-79

= # 2 ri‘it;‘:?u ﬁnﬂﬂz —f~

NI W, Department of Comput e and Information Engineering

P2P: centralized directory

. "Rl
,|‘ -
-55;:".'

Bob

original "Napster” design cortralized) @
1) when peer ¢ onnects, it directory server L.
informs central server:
O IP address n
O content

2) Alice queries for "Hey
Jude"

3) Alice requests file from
Bob

WMN
ﬁ/ Application Laver 2-80

Iﬂ,z.%.iu:.?u ﬁ‘RIF$+

NlJD|.l ent of Comput iation Engin

P2P: problems with centralized dlrectory

0 Single point of failure file transfer is
O Performance bottleneck decentralized, but

- . oo locating content is
A C ht inf t &
(fgg; S TTHRGEmER highly decentralized

WMN
f/ Application Laver 2-81

= # 2 %‘Jtﬁ#u ﬁnﬂﬂz —f~

NIJL|.l nt o

Query flooding: Gnutella

O fully distributed overlay network: graph

O no central server J edge between peer X
O public domain protocol and Y if there's a TCP
7 many Gnutella clients connection

implementing protocol O all active peers and
edges is overlay net

0 Edge is not a physical
link

O Given peer will
typically be connected
with <10 overlay
neighbors

=

Application Laver 2-82

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Gnutella: protocol

File transfer:

0 Query message HTTP
sent over existing TCP
connections
Query .
O peers forward .
QueryHit
Query message
0 QueryHit <%,
sent over
reverse
path @
Scalability:

limited scope

_ﬂooding @
@ ‘

ﬁ/ Application Laver 2-83

= # 2 %‘Jtﬁ#\., ﬁnﬂﬂz —f~

NIJL|.l nt o

Gnutella: Peer joining

Joining peer X must find some other peer in
Gnutella network: use list of candidate peers

X sequentially attempts to make TCP with peers on
list until connection setup with Y

X sends Ping message to Y; Y forwards Ping
message.

All peers receiving Ping message respond with
Pong message

X receives many Pong messages. It can then setup
additional TCP connections

Peer leaving: see homework problem!

=

Application Laver

2-84

@

G Az inre ((ENIRSR

Exploiting(F1i7) heterogenetty:
KaZaA ﬁ

O Each peer is either a
group leader or assigned
to a group leader.

O TCP connection between
peer and its group leader.

O TCP connections between
some pairs of group
leaders.

O Group leader tracks the
content in all its

children.

[) ordinary peer

' group-leader peer

neighoring relationships

in overlay network

Application Laver 2-85

- __". - =
X AZF LB (CEATIERR
NTPU, Department of Computer Science and Information Engineering

KaZaA: Querying

3 Each file has a hash and a descriptor

3 Client sends keyword query to its group
leader

O Group leader responds with matches:
O For each match: metadata, hash, IP address

O If group leader forwards query to other
group leaders, they respond with matches

O Client then selects files for downloading

O HTTP requests using hash as identifier sent to
peers holding desired file

WMN
ﬁ/ Application Laver 2-86

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Kazaa tricks

O Limitations on simultaneous uploads
O Request queuing
O Incentive priorities

O Parallel downloading

WMN
ﬁ/ Application Laver 2-87

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
3 2.2 Web and HTTP with TCP
0 23 FIP 0 2.8 Socket programming
A 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WMN
:m/ Application Laver 2-88

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Socket programming

Goal: learn how to build client/server application that
communicate using sockets

Socket API — socket
3 introduced in BSD4.1 UNIX,
1981 a host-local,

application-created,
OS-controlled interface (a
“door”) into which

O explicitly created, used,
released by apps

O client/server paradigm .
. application process can
O two types of transport service both send and
via socket APT: receive messages to/from
O unreliable datagram another application process
O reliable, byte stream-
oriented

WMN
ﬁy Application Laver

2-89

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UDP or TCP)

TCP service: reliable transfer of bytes from one process
to another

m m controlled by

controll.lecf[l.by N process process I application
application developer
developer ¥ m m A P
controlled by | |TCP with|<— > Tb(1:1 I;f‘g;lsth (c);r;’;gc;ﬂleg oy
operating | | buffers, internet variable,s system
system | |variables '
host or host or
server server

WMN
ﬁ/ Application Laver 2-90

ﬁ]A%’itﬁ?‘ u ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Socket programming with TCP

Client must contact server

O server process must first be
running

[server must have created
socket (door) that welcomes
client's contact

Client contacts server by:

O creating client-local TCP
socket

O specifying IP address, port
number of server process

[When client creates socket:
client TCP establishes
connection to server TCP

O When contacted by client,
server TCP creates new socket
for server process to
communicate with client

O allows server to talk with
multiple clients

O source port numbers used
to distinguish clients
(more in Chap 3)

-application viewpoint
TCP provides reliable, in-order

transfer of bytes (“pipe”)
between client and server

WMN
ﬁ/ Application Laver 2-91

Stream jargon

O A stream is a sequence of
characters that flow into or
out of a process.

O An input stream is attached
to some input source for the
process, eg, keyboard or
socket.

O An output stream is attached
to an output source, eg,
monitor or socket.

WMN
:m/ Application Laver

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

2-92

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Socket programming with TCP

keyboard monitor
A

Example client-server app:

1) client reads line from standard
input (INFromuser stream) , input

stream

sends to server via socket Client
(outToServer stream)

[P—

inFromUser

. process
2) server reads line from socket

3) server converts line to
uppercase, sends back to client

4) client reads, prints modified
line from socket
(InFromServer stream)

output
stream

input
stream

outToServer |e—

inFromServer |—>

client TCP

socket

to network from'network

WMN
ﬁ/ Application Laver 2-93

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

Client/server socket interaction: TCP

Server (running on hostid)

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()

_

wait for incoming
connection request

read request from
connectionSocket

write reply to
connectionSocket

close 1
connectionSocket

I

connectionSocket =
welcomeSocket.accept()

< . —)
connection sefup connect to hostid, port=x

Client

create socket,

clientSocket =
Socket()

\ 4

send request using
/ ClientSOCket

!

4

— read reply from
clientSocket

close 1
clientSocket

Application Laver 2-94

G Azinre (ENIRSR

NTPU, Department of Computer Science and Information Engineering

Example: Java client (TCP)

import java.io.*;
import java.net.”*;
class TCPClient {

public static void main(String argv([]) throws Exception
{

String sentence;

String modifiedSentence;

Create]

input stream[BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));
Create’]

client socket, —= Socket clientSocket = new Socket("hostname", 6789);
connect to server |
__, DataOutputStream outToServer =

Create’]
new DataOutputStream(clientSocket.getOutputStream());

output stream
attached to socket

{wmn’
ﬁ/ Application Laver 2-95

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

Example: Java client (TCP), cont.

Create BufferedReader inFromServer =
input stream new BufferedReader(new
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Send line|

to server | outToServer.writeBytes(sentence + \n'),

Read line — modifiedSentence = inFromServer.readLine();
from server_

System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

WHMN
ﬁy Application Laver 2-96

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv([]) throws Exception
{
String clientSentence;

Create String capitalizedSentence;

1 ' ket
WEICOTITE SOCXE L ServerSocket welcomeSocket = new ServerSocket(6789);
at port 6789

Wait, on welcoming | while(true) {

socket for con.tact — > Socket connectionSocket = welcomeSocket.accept();
by client_
BufferedReader inFromClient =

Create input ——— new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));

to socket_|

WMN
:m/ Application Laver 2-97

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Example: Java server (I'CP), cont

Create output|

stream, attaChked DataOutputStream outToClient =
to socket|— new DataOutputStream(connectionSocket.getOutputStream());

Read in line|

from sockei—' clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + "\n';

Write outline] outToClient.writeBytes(capitalizedSentence);
to socket

— }

} _
} End of while loop,

loop back and wait for
_ano’rher client connection

WMN
ﬁ/ Application Laver 2-98

ﬁ],z:.%it;‘:.? k._ ﬂ‘ﬂIF’@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications 0 2.7 Socket programming
3 2.2 Web and HTTP with TCP
0 23 FIP 0 2.8 Socket programming
3 2.4 Electronic Mail with UDP
o SMTP, POP3, IMAP 0 2.9 Building a Web server
0 2.5 DNS

WMN
:m/ Application Laver 2-99

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

Socket programming with UDP

UDP: no "“connection” between
client and server

g

no handshaking

sender explicitly attaches IP -application viewpoint
address and port of

destination to each packet

a

UDP provides unreliable transfer
of groups of bytes (“datagrams”)
between client and server

[server must extract II°
address, port of sender from
received packet

UDP: transmitted data may be
received out of order, or lost

WMN/,
' f/ Application Laver 2-100

F Az g re ((*EATESSR

NTPU, Department of Computer Science and Information Engineering

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket,

port=x, for clientSocket =

Incoming request: DatagramSocket()

serverSocket =

DatagramSocket() 1

_>J Create, address (hostid, port=x,

send datagram request
read request from using clientSocket

serverSocket

write reply to

serverSocket P
specifying client —» Teadreply Irom
host address, clientSocket
port number Jose 1
1 clientSocket

Application Laver 2-101

F Az g re ((*EATESSR

Example: Java client (UDP)

keyboard monitor

o

input g
stream §
Client a
Input: receives
rocess
P packet (TCP
Output: sends recelve’fi byte
packet (TCP sent\ stream”)
“byte stream”) UDP

packet

sendPacket
receivePacket

client UDP

socket

socket

to network from network

WMN/,
ﬂ/ Application Laver 2-102

CFAZEn LB (EATESR

NTPU, Department of Computer Science and Information Engineering

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

Create] {

input stream [— g fferedReader inFromUser =

Create | new BufferedReader(new InputStreamReader(System.in));

client socket|—> DatagramSocket clientSocket = new DatagramSocket();

Translate |
hostname to IP

address using DNS

~ InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

WMN
ﬁ/ Application Laver 2-103

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

Example: Java client (UDP), cont.

Create datagram

with data-to-send,| DatagramPacket sendPacket =
length, [P addr, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagram clientSocket.send(sendPacket);
to server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

Read datagram|
from server|

—» clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

WHMN
ﬁy Application Laver 2-104

G AzEn L2 (EATRSS

NTPU, Department of Computer Science and Information Engineering

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

Create {
datagram socket Dat Socket Socket = at ko976
at port 9876 atagramSocket serverSocket = new DatagramSocket();
byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];
while(true)
{
Create space for |
received datagram ——— DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Receive serverSocket.receive(receivePacket);
datagram

WHMN
ﬁy Application Laver 2-105

F Az Enx8 ERTRSR

NTPU, Department of Computer Science and Information Engineering

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr|
port #, of
sender_

— InetAddress IPAddress = receivePacket.getAddress();

—>int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();

— DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

Create datagram
to send to client

Write out

datagram — serverSocket.send(sendPacket);
to socket

}
) _
} End of while loop,

loop back and wait for
another datagram

WMN
ﬁ/ Application Laver 2-106

= A 2 %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

NIJL|_l it of Comput

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications A 2.7 Socket programming

O app architectures with TCP
O app requirements 0 2.8 Socket programming

3 2.2 Web and HTTP with UDP

O 2.4 Electronic Mail 3 2.9 Building a Web server
o SMTP, POP3, IMAP

3 2.5 DNS

WHMN
ﬁy Application Laver 2-107

= # 2 %Jt£¥ \L ﬁnﬂﬂz%ﬂ-ﬁ

NIJL|.l nt o

Building a simple Web server

0 handles one HTTP O after creating server,
request you can request file
O accepts the request using a browser (eg IE
explorer)

0 parses header

7 obtains requested file 3 see text for details

from server's file system

O creates HT'TP response
message:

O header lines + file

O sends response to client

=

Application Laver 2-108

E‘r] %Jtﬁ.ﬁh ﬂ‘ﬂI?‘”@—f*

Chapter 2: Summary S3:stQners

Our study of network apps now complete!

O Application architectures 0 specific protocols:
O client-server o HTTP
o P2P o FTP
O hybrid o SMTP, POP, IMAP
7 application service o DNS
requirements: O socket programming
O reliability, bandwidth,
delay

O Internet transport service
model

O connection-oriented,
reliable: TCP

O unreliable, datagrams: UDP

WHMN
ﬁy Application Laver 2-109

= E 2 %Jtﬁ:?\,, ﬁ‘RIF$+

Nl U, Department of Comput e and Information Eng

Chapter 2: Summary

Most importantly: learned about protocols

O typical request/reply
message exchange:

O client requests info or

O control vs. data msgs
O in-band, out-of-band

. [centralized vs. decentralized
service
o server responds with [stateless vs. stateful

transfer
O message formats:

O headers: fields giving
info about data

O “complexity at network edge”

O data: info being
communicated

WHMN
ﬁy Application Laver 2-110

