

Wireless and Mobile Network Architecture

Chapter 9 General Packet Radio Service (GPRS)

Prof. Yuh-Shyan Chen

Department of Computer Science and Information Engineering National Taipei University Nov. 2006

Outline

- Introduction
- GPRS Functional Groups
- GPRS Architecture
- GPRS Network Nodes
- GPRS Interfaces
- GPRS Procedures
- GPRS Billing
- Evolving from GSM to GPRS
- Summary

GPRS vs. GSM

- In early 2000, only a small portion of GSM subscribers used data services
 - GSM do not support easy access, high data rate, and attractive prices.
- GPRS reuses the existing GSM infrastructure to provide end-to-end packet-switched services.
 - GPRS standardization was initiated by ETSI/SMG in 1994, and completed in 1999, GPRS products were developed in 1999.

GPRS

- The GPRS core network has been developed for IS-136 TDMA systems, and is anticipated to evolve as the core network of the thirdgeneration mobile system.
- To accommodate GPRS, new radio channels are defined. The allocation of these channels is flexible.
 - One to eight time slots can be allocated to a user
 - Several active users can share a single time slot

GPRS

- Various radio channel coding schemes are specified to allow bit rates from 9 Kbps to 150 Kbps per user.
- GPRS fast reservation is designed to start packet transmission within 0.5 to 1 second.
- GPRS security functionality is equivalent to the existing GSM security, where a ciphering algorithm is optimized for packet data transmission

GPRS

 GPRS is a relatively inexpensive mobile data service compared to Short Message Service (SMS) and Circuit-Switched Data.

18.1 GPRS Functional Groups

- (1) Network access
- (2) Packet routing and transfer
- (3) Mobility management
 - Keeps track of the current location of an MS
 - Cell update, routing area update, combined routing area, and location area update
- (4) Logical link management
- (5) Radio resource management
- (6) Network management

provides mechanism to support OA&M functions 7

Network Access

- Registration
- Authentication and authorization
- Admission control
- Message screening
- Charging information collection for packet transmission in GPRS and external networks

Packet Routing and Transfer

- Packet routing and transfer function route the data between an MS and the destination through the serving and gateway GPRS support Nodes (GSNs)
 - Relay function
 - Routing
 - Address translation and mapping
 - Encapsulation and tunneling
 - Compression and ciphering
 - Domain name service functions

Logical Link Management

- Logical link establishment
- Logical link maintenance
- Logical link release

Radio Resource Management

- Um management
- Cell selection
- Um-tranx, which provides packet data transfer capability
 - Medium access control, etc.
- Path management

18.2 GPRS Architecture

- MS, BSS (Base Station System), mobile switching center/visitor location register (MSC/VLR), and home location register (HLR) in the existing GSM network are modified
- Two new network nodes are introduced in GPRS network
 - The serving GPRS support node (SGSN) is the GPRS equivalent to the MSC
 - The gateway GPRS support node (GGSN) provides interworking with external packetswitched network

GPRS Interfaces

13

18.2 GPRS Architecture

- Gr and Gc follow the GSM MAP protocol
- A interface is used for both signaling and voice transmission in GSM
- Interfaces Um, Gb, Gn, Gp, and Gi are used for both signaling and transmission in GPRS

18.3 GPRS Network Nodes

Mobile Station

- A GPRS MS consists of a mobile terminal (MT) and terminal equipment (TE).
- An MT communicates with the BSS over the air.
- The MT is equipped with software for GRPS functionality in order to establish links to the SGSN
- The existing GSM For example, GSM MS does not support GPRS
- For example, GPRS MS utilizes automatic retransmission (ARQ) at the data link layer to retransmit the error frames

18.3.2 Base Station System

Base Station System

- To accommodate GPRS, the base transceiver station (BTS) and the base station controller (BSC) on the BSS are modified.
- A new component, the packet control unit (PCU), is introduced.
- The BTS is modified to support new GPRS channel coding schemes.
- The BSC forwards circuit-switched calls to the MSC, and packet-switched data (through the PCU) to the SGSN.

18.3.3 GPRS Support Node

• A serving GSN (SGSN)

- The role of an SGSN is equivalent to that of the MSC/VLR in the current GSM network
- A gateway GSN (GGSN)
 - The GGSN is primarily provisioned by a router, which supports traditional gateway functionality
 - Publishing subscriber addresses
 - Mapping addresses
 - Routing and tunneling packets
 - Screening messages
 - Counting packets

18.3.4 HLR and VLR

- New fields in the MS record are introduced in HLR
 - They are accessed by SGSN and GGSN using IMSI as the index key
 - These fields are used to map an MS to one or more GGSNs
- In MSC/VLR, new field, SGSN number, is added to indicate the SGSN currently serving the MS.

18.4 GPRS Interfaces

- $\bullet \quad Um (BSS \leftrightarrow MS)$
- Gb (BSS \leftrightarrow SGSN)
- Gn (SGSN \leftrightarrow GGSN)
- Gp (SGSN \leftrightarrow GGSN in Other GPRS Network)
- Gs (SGSN \leftrightarrow MSC/VLR)
- Gi (GGSN \leftrightarrow PDN)

18.4.1 Um Interface (BSS ↔ MS)

- Um radio interface: radio interface between MS and BTS
- GPRS radio technology
 - Based on the GSM radio architecture
 - New logical channel structure
 - To control signaling and traffic flow over the Um radio interface

Radio Channel Structure

- The physical channel dedicated to packet data traffic is called a *packet data channel* (PDCH).
- Different logical channels can occur on the same PDCH.

Logical Channel Map

Logical Channels (PCCCH) (1/2)

Packet Common Control Channel (PCCCH)

- Convey common control channel
- Whether PCCCH is allocated or not, CCCH can be used to initiate a packet transfer.
- PCCCH includes PRACH, PPCH, PAGCH, PNCH.
- Packet Random Access Channel (PRACH) (MS → BTS)
 - To initiate uplink transfer for data or signaling

Logical Channel Map

Logical Channels (PCCCH) (2/2)

- Packet Paging Channel (PPCH) (BTS → MS)
 - Page an MS for both circuit-switched and packet data services
- Packet Access Grant Channel (PAGCH) (BTS → MS)
 - Resource assignment in the packet transfer establishment phase
- Packet Notification Channel (PNCH) (BTS)
 - → MS)
 - Used to send a Point-To-Multipoint Multicast (PTM-M) notification for resource assignment.

PBCCH & PTCCH

Packet Broadcast Control Channel (PBCCH)

- Broadcast system information specific for packet data
- If PBCCH is not allocated, GSM BCCH can be used for broadcast.
- Packet Timing Advance Control Channel (PTCCH) (BTS ↔ MS)
 - Transmit a random access burst
 - BSS estimates timing advance. BSS to transmit timing advance information updates to MS.

Logical Channel Map

Packet Traffic Channels (PTCH)

- Packet Data Traffic Channel (PDTCH)
 - One PDTCH ↔ one physical channel
 - Up to eight PDTCHs per MS
- Packet Associated Control Channel (PACCH)
 - Conveys power control, resource assignment and reassignment information.
 - PACCH shares resources via PDTCHs.
 - An MS currently involved in packet transfer can be paged for circuit-switched services on PACCH.

Two Concepts for GPRS Channel Management

- Master-Slave
 - Master: at least one PDCH
 - PCCCH: control signalling for initiating packet transfer.
 - Salves: Other PDCHs
 - PDTCH: for user data transfer
 - PACCH: for dedicated signalling
- Capacity on Demand
 - The allocation of capacity for GPRS is based on the needs for actual packet transfers.
 - The operator decides the allocation of physical resources (i.e. PDCHs) for the GPRS traffic.

Logical Channel Map

Figure 18.5 GPRS Uplink Packet Transfer

18.4.1.2 Um Protocol Layers

- RF Layer (RFL)
 - Performs modulation/demodulation .
- Physical Link Layer (PLL)
 - Provides services for information transfer over a physical channel.
- Medium Access Control (MAC)
 - MAC is responsible for channel access (scheduling, queuing, contention resolution), PDCH multiplexing, and power control.
- Radio Link Control (RLC)

 Block segmentation and reassembly, buffering, and retransmission with backward error correction²?

GPRS Interfaces

Um Protocol Layers

- Four GPRS coding scheme CS1, CS2, CS3, and CS4 – are defined.
 - The GPRS channel coding schemes increase the data rate, but at the cost of decreasing protection (correction capability).

Table 18.1 Four GPRS Coding Schemes

Coding Scheme	CS1	CS2	CS3	CS4
User Data Rate	9.05Kbps	13.4Kbps	15.6Kbps	21.4Kbps
Correction Capability	Highest			None
Worst-Link Budget	135dB	133dB	131dB	128.5dB
Maximum Cell Range	450m	390m	350m	290m

18.4.2 Gb Interface (MS ↔ BSS ↔ SGSN)

- The Gb interface allows many users to be
 - Multiplexed over the same physical resource.
- The Gb interface includes
 - Physical Layer
 - Layer 2
 - NS (Network Service; Frame Relay)
 - BSSGP (Base Station System GPRS Protocol)
 - Relay Function
 - LLC (Logical Link Control)
 - Layer 3
 - SNDCP (SubNetwork Dependent Convergence Protocol)
 - GMM SM (GPRS Mobility Management Session Management)

GPRS Interfaces

37

Network Service (NS)

- The NS layer delivers encapsulated packets between the SGSN and BSS that are connected directly by a frame link or indirectly through cascading links in a frame relay network.
- Physical layer (BBS ↔ SGSN): frame relay link
- Each frame relay link supports one or more Network Service Virtual Links (NS-VLs).
 - To construct an end-to-end virtual path between BSS and SGSN.
 - The path is Network Service Virtual Connection (NS-VC)

Network Service (NS)

- NS manages NS-VCs.
 - Blocking
 - Unblocking
 - Resetting
 - Testing
- Using NS-VCs, NS transports data from uplayered

Network Service (NS)

- BSSGP Packet Data Units (PDUs).
- The NS layer delivers encapsulated packets (SGSN ↔ BSS).
- Load sharing to distribute the packet traffic among the unblocked NS-VCs.

BSS GPRS Protocol (BSSGP)

- BSSGP provides the radio-related QoS and Routing Information required to transmit user data (BSS ↔ SGSN).
- BSSGP Virtual Connection (BVC) provides communication path between BSSGP entities (i.e., BSS, SGSN).
 - BVC is supported by NS-VCs.
 - Each BVC transports BSSGP PDUs.
- Three service models supported by BSSGP:
 - BSSGP/RL service model
 - GMM Model

NM Model

BSSGP/RL Service Model

- In BSS, Relay function provides buffering and parameter mapping between RLC/MAC and BSSGP.
- In SGSN, BSSGP controls the transfer of LLC frames across the Gb interface.
- PDU contains
 - User information (an LLC packet)
 - RLC/MAC-related information
 - A QoS profile
 - PDU lifetime

GPRS Mobility Management (GMM) Service Model

- BSSGP GMM service model performs mobility management functions between SGSN and BSS.
- Examples of GMM service primitives provided by BSSGP are
 - PAGING
 - SUSPEND
 - RESUME

The Network Management (NM) Service Model

- NM service model handles
 - Functions related to Gb interfaces
 - BSS and SGSN Node Management Control
 - BSSGP protocol machine
- Examples of BSSGP-supported NM service primitives are
 - FLOW-CONTROL-BVC
 - FLOW-CONTROL-MS
 - No flow control is performed in the uplink direction.
 - There is a downlink buffer for each BVC.

The Network Management (NM) Service Model

- Flow control message FLOW-CONTROLBVC (FLOW-CONTROL-MS) sent from the BSS to the SGSN
 - To control downlink transmission at the SGSN
 - Parameters: buffer size and the bucket leak rate
- PDU in the downlink is not transferred to the MS before its lifetime expires
 - PDU is deleted from the BVC downlink buffer
 - This action is reported to SGSN.

18.4.3 Gn & Gp Interfaces

- Both Gn and Gp interfaces utilizes the GPRS Tunneling Protocol (GTP).
 - Gn (SGSN ↔ GGSN)
 - Gp (SGSN ↔ External GGSN)
- GTP tunnels user data and signaling messages between GSNs.
- Gp is the same as Gn except
 - Extra security functionality for internetwork communications over the Gp interface.
- With GTP,
 - An SGSN may communicate with multiple GGSNs.
 - A GGSN may connect to many SGSNs.

GPRS Interfaces

47

Gn & Gp interfaces

- In the transmission plane, GTP is supported by the
 - Transmission Control Protocol (TCP) for connection-oriented transmission
 - User Datagram Protocol (UDP) for connectionless transmission
- GTP transmission uses a tunneling mechanism to carry user data packets.
 - Two-way, point-to-point path
 - Tunneling transfers encapsulate data between GSNs.
 - GTP implements out-of-band signaling.

Gn & Gp interfaces

- In the signaling plane, GTP is supported by UDP.
- A GTP tunnel is defined by the associated PDP contexts in two GSN nodes, and is identified with a tunnel ID.
- GTP performs
 - Path Management
 - Tunnel Management
 - Location Management
 - Mobility Management

Path and Location Managements in GTP

Path management

- To detect failures occurring in the path
- Echo_Request and Response message pair

Location management

- If GGSN does not support SS7 MAP for communication with an HLR.
- the interaction (GGSN↔HLR) is done indirectly through a specific GSN that performs GTP-MAP protocol conversation (usually through SGSN).

GTP Tunnel Management

- GTP tunnel management creates, updates, and delete tunnels. Some of the tunnel management messages are described herein.
 - Creating Tunnels
 - Create_PDP_Context_Request
 - Create_PDP_Context_Response
 - Active PDP context
 - PDU_Notification_Request
 - PDU_Notification_Reponse
 - Updating Tunnels
 - Update_PDP_Context_Request
 - Update_PDP_Context_Reponse
 - Deleting Tunnels
 - Delete_PDP_Context_Request
 - Delete_PDP_Context_Reponse

GTP Mobility Management

- GTP mobility management supports functions such as GPRS attach, GPRS routing area update, and activation of PDP contexts.
- When an MS moves from one SGSN to another SGSN.
 New SGSN

18.4.4 Gs Interface (SGSN ↔ MSC/VLR)

- The Gs interface connects the database in the MSC/VLR and the SGSN, which does not involve user data transmission.
- BSSAP+ procedures coordinate the location information of MSs that are both IMSIattached and GPRS-attached.
- BSSAP+ are used to convey some GSM procedures via the SGSN.
 - Paging Procedure
 - Suspend Procedure
 - Resume Procedure
 - Location Update Procedure

GPRS Interfaces

Paging Procedure

- VLR can use GPRS to page MS for MSC/VLRbased service.
 - Class A or Class B MS can simultaneously IMSI-Attached and GPRS-Attached.
- It is not necessary to page an MS for both GSM and GPRS services.
- Reduce the overall paging load on the radio interface.

Paging Procedure

- Step 1 : VLR sends the GPRS_PAGING to the SGSN.
- Step 2 : SGSN checks if the MS is GPRSattached and is known by SGSN.
 - Yes: SGSN sends the Gb PAGING to the BSS.
- Step 3 : SGSN forwards the paging result back to the VLR.
 - If the MS does not respond, VLR or BSS retransmits the paging message.
 - The SGSN is not responsible for retransmission of the message.

Suspend Procedure

- To perform circuit-switched activity for a Class B MS (both IMSI- and GPRS-attached).
- VLR uses the SUSPEND procedure to inform the SGSN to suspend the GPRS activities of the MS.

Resume Procedure

VLR sends a RESUME message to the SGSN to resume the GPRS activity of the MS.

Location Update Procedure

A MS-initiated GPRS location update

- Step 1 : SGSN sends GPRS_LOCATION_UPDATING_Request to VLR.
- Step 2 : The VLR Checks to determine if the IMSI is known.
 - If IMSI is unkonw, VLR retrieves the MM context of the MS from the HLR.
- Success : VLR return a GPRS_LOCATION_UPDATING_Accept to SGSN.

Location Update Procedure

- Fail : SGSN informs the MS that the location update failed.
 - SGSN does not hear from the VLR within a period T8-1
 - VLR replies with a GPRS_LOCATION_UPDATING_Reject to SGSN

18.4.5 Gi Interface (GGSN \leftrightarrow PDN) (1/3)

- GGSN interworks with
 - PSDN (Public Switched Data Network)
 - PDN (Packet Data Network)
- Gi: GGSN ↔ PSDN/PDN
 - The interworking models to PSDN includes X.25 and X.75.
 - An MS is assigned an X.121 address. This address dynamically or permanently assigned
 - The interworking models to PDN includes IP and Point-to-point (PPP).

 The IP address is statically assigned or dynamically allocated when PDP context activation.

GPRS Interfaces

62

Gi Interface (GGSN ↔ PDN) (2/3)

- GPRS may
 - Transparently access the Internet
 - Non-transparently access the intranet and ISP.
- In transparently access the Internet,
 - IP address from the GPRS operator's addressing space
 - This address is used on GPRS network.
 - No authentication request at PDP context activation
 - Domain name services provided by the GPRS

Gi Interface (GGSN ↔ PDN) (3/3)

- In nontransparent access to an intranet or ISP,
 - IP address of an MS from the intranet/ISP address space
 - At PDP context activation, the MS must be authenticated by the intranet/ISP.
 - DNS provided by the intranet/ISP

GPRS Procedures

- GPRS Attach
- GPRS Detach
- PDP context procedure
- RA/LA Update

Figure 18.6 GPRS Attach Procedure

GPRS Detach

- GPRS detach can be initiated by MS, SGSN, or HLR.
- The different types of detach are:
 - IMSI detach
 - GPRS detach
 - Combined GPRS/IMSI detach (MS-initiated only)

Figure 18.6 GPRS Detach Procedure

PDP Context Procedures (1/2)

- PDP Context Activation
 - MS-initiated
 - Network-requested
- PDP Context Modification
- PDP Context Deactivation
 - SGSN-initiated
 - MS-initiated
 - GGSN-initiated

Figure 18.7 PDP Context Procedures (2/2)

Figure 18.8 The Combined RA/LA Update Procedure

Μ	S	BSS	New SC	GSN	Old S	SGSN	GG	SN	New	VLR	HLR
	1. Routin	ng Area Update	e Request 2. 5 2. 5 2. 5	SGSN_Conte SGSN_Conte SGSN_Conte 3. Update_F 3. Update_F	ext_Request ext_Response ext_Acknowle PDP_Context PDP_Context	dge (Packet forw Request Response	arding) ───►				
				<u>4. MAP_UP</u>	DATE_LOCA		4. MAP_C 4. MAP_C	ANCEL_L		ack	→
				4. MAP_I	NSERT_SUB	SCRIBER_DA	ГА				
				4. MAP_I	NSERT_SUB	SCRIBER_DA	TA_ack				>
				4. MAP_l	JPDATE_LO	CATION_ack					
			-	5. GPRS_	_Location_Up	dating_Reques	t				
	6. Routii	ng Area Updati	ng Accept	5. GPRS	_Location_Up	dating_Accept			Sta	andard GSM Location U	Inter-VLR pdate

GPRS Billing

- Charging information is collected by SGSNs and GGSNs.
- In SGSN
 - Radio resource usage by an MS.
- In external/internal GGSNs
 - Network usage
- The charging of the visited GPRS is gathered and sent to the home GPRS network.

The Charging Info in SGSN

- Location information
- The amount of data transmitted
- The amount of time
- The amount of GPRS-related network resources..
- The GPRS activity (e.g., MM)
- Note that the data volume counted is at
 - SNDCP level in SGSN.

The Charging Info in GGSN

- The addresses of the destination and source
- The amount of data delivered
- The period
- Note that the data volume counted is at the GTP level in GGSN.

Types of Call Detailed Records (CDRs)

- S-CDR for the radio usage by SGSN
- G-CDR for external data network usage by GGSN
- M-CDR for Mobility Management activity by SGSN

The Generation of CDRs (1/2)

- Every CDR is associated with an active PDP context.
- A CDR is generated by the following criteria:
 - End-of-Call Accounting Schedule
 - Time-of-Day Accounting Schedule
 - Inter-SGSN routing area update

The Generation of CDRs (2/2)

- Charging for packet-switched is more difficult.
 - The cost of measuring packet is large.
 - Existing GSM billing system may not able to handle GPRS real time CDR information.
- Charging gateway

Evolving From GSM to GPRS

- Reusing the GSM infrastructure
 - Software-related cost
 - GPRS software is remotely downloaded to BTSs.
 - Hardware cost
 - PCU-module to BSC, GGSN and SGSN
- MS development
 - Resolve the power consumption
 - Multiple time-slot transmission (much more power)

Table 18.2 GSM Network Elements Impact by GPRS

ELEMENT	SOFTWARE	HARDWARE
MS	Upgrade required	Upgrade required
BTS	Upgrade required	No change
BSC	Upgrade required	PCU interface
TRAU	No change	No change
MSC / VLR	Upgrade required	No change
HLR	Upgrade required	No change
SGSN	New	New
GGSN	New	New

GPRS Phase 1 Implementation (1/2)

- Standard Packet Services Delivery
- CS-1 and CS-2 Channel Coding Scheme
- Gn, Gb, Gp, Gs interfaces
- Flexible Radio Resource Allocation
- Classes B and C MSs
- GPRS Charging
- IP and X.25 interfaces to packet data network

GPRS Phase 1 Implementation (2/2)

- Static and dynamic IP Address Allocation
- Anonymous Access
- Security

GPRS Phase 2 Implementation

- Enhanced QoS support in GPRS
- Unstructured octet stream GPRS PDP type
- Access to ISPs and Intranets
- GPRS Prepaid
- GPRS Advice of Charge
- Group Call
- Point-to-multipoint services

Applications in GPRS (1/2)

- Specific Data Communication Requirement of Companies:
 - Traffic Management (Fleet Management, Vehicle Tracking, Vehicle Control, Guidance)
 - Monitoring Automation (Telemetry and Security)

Applications in GPRS (2/2)

- Applications for Individual Users
 - Entertainment (Games and Music)
 - Location Information (Restaurants, Cinema, Hotels, Parking)
 - Commerce Transactions (Banking, Airlines, trains, Online Shopping.)

