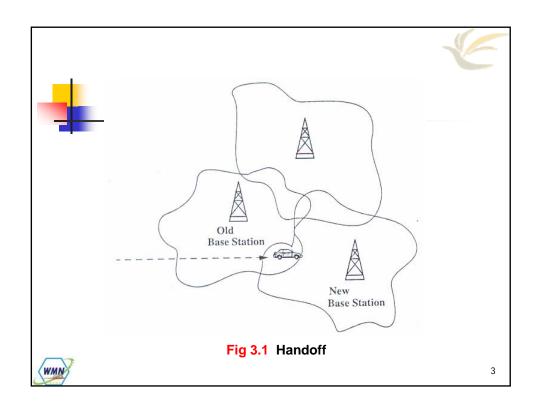


Wireless and Mobile Network Architecture

Chapter 3: Handoff Management Detection and Assignment

Prof. Yuh-Shyan Chen

Department of Computer Science and Information Engineering National Taipei University Sep. 2006



1

Outline

- 3.1 Handoff Detection
 - Who initiates the handoff process?
 - How is the need for handoff detected?
- 3.2 Strategies for Handoff Detection
 - MCHO
 - NCHO
 - MAHO
- 3.3 Channel Assignment
 - Nonprioritized Scheme
 - Queuing Priority Scheme
- Subrating Scheme

Introduction

- Three issues for handoff management
 - Handoff detection (ch3)
 - Channel assignment (ch3)
 - Radio link transfer (ch4)

5

3.1 Handoff Detection

- To initiate a handoff:
 - Who initiates the handoff process?
 - How is the need for handoff detected?
- Three measurements are used for handoff management
 - Word error indicator (WEI)
 - Received signal strength indicator (RSSI)
 - 80db~100db
 - Quality indicator (QI)
 - 5db~25db

Three measurements

- Three measurements are used for handoff management
 - Word error indicator (WEI)
 - Metric that indicates whether the current burst was demodulated properly in the MS.
 - Received signal strength indicator (RSSI)
 - Measure of received signal strength.
 - The RSSI metric has large useful dynamic range 80db~100db
 - Quality indicator (QI)
 - Estimate of the "eye opening" of a radio signal, which relates to the **signal to interference** and **noise (S/I) ratio**.
 - The QI metric has narrow range 5db~25db

7

Cont.

- Handoff may depend more reliably on WEI of the current channel than RSSI.
- It is necessary to accumulate WEI
 measurements over a period of time, whereas
 RSSI is known instantaneously.
- To make sure the handoff decision accurately and quickly, it is desirable to use both WEI and RSSI.

- RSSI measurements are affected by
 - Distance-depend fading
 - Lognormal fading
 - Rayleigh fading (multipath fading)
- Ideally, the handoff decision should be based on
 - Distance-depend fading
 - Shadow fading
 - Independent of Rayleigh fading

9

Cont.

- Channel comparison for handoff are based on RSSI and QI metrics.
- Filter should be applied on both RSSI and QI metrics.
 - Window averaging
 - Leaky-bucket integration

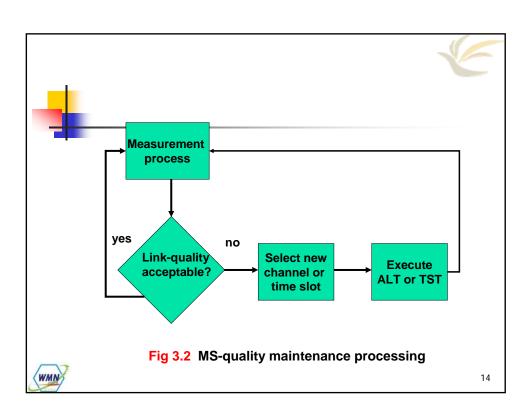
- Short-term Rayleigh fading is usually handled in mobile system designs by techniques including
 - Diversity techniques
 - Multiple receiver
 - Correlators with variable lines
 - Antenna diversity
 - Signal processing techniques
 - Bit interleaving
 - Convolutional coding
 - equalizer

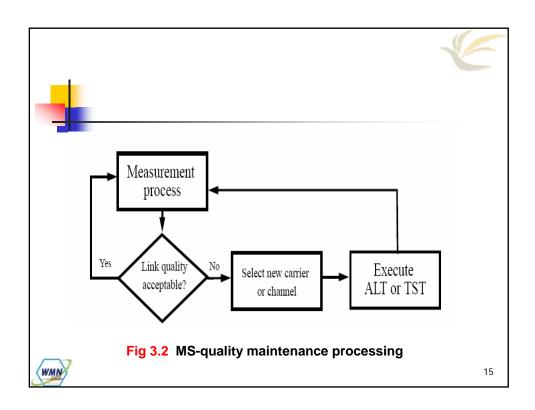
11

WMN

3.2 Strategies for Handoff Detection Mobile-Controlled Handoff (MCHO)

- MCHO is employed by lower-tier DECT and PACS.
 - The MS continuously monitors the signal of the surrounding BSs
 - When some handoff criteria are met, the <u>MS</u> checks the "best" candidate BS for an available traffic channel and launches a handoff request
 - Automatic link transfer (ALT)
 - Handoff between two BSs
 - Time slot transfer (TST)
 - Handoff between channels on the same BS


WMN



- The MS receiver generally obtains twp pieces of information: RSSI and QI.
- The required handoff time for
 - DECT is 100 msec to 500 msec.
 - PACS is 20 msec to 50 msec.

Network-Controlled Handoff (NCHO)

- NCHO is employed by the lower –tier CT-2 plus and high-tier AMPS
 - The network (MSC) asks all surrounding BSs to measure the signal (RSSI) from the MS and report the measurement results back the network.
 - The MSs supervise the quality of all current connections by making measurements of RSSI.
 - The required handoff time can be up to 10 seconds or more.

Mobile-Assisted Handoff (MAHO)

- NAHO is employed by the lower –tier CT-2 plus and high-tier GSM, IS-95 CDMA, and IS-136 TDMA
 - Both the MS and BS supervise the quality of the link
 - RSSI and WEI values
 - In GSM, the MS transmits the measurement results to BS twice a second.
 - When and where to execute handoff is made by the network
 - BS, MSC or BSC

17

 The GSM handoff execution time is approximately 1 second.

3.2.4 Handoff Failures

- Handoff Failures
 - No channel is available
 - Handoff is denied by the network
 - It takes the network too long to set up the handoff
 - The target link fails in some way during the execution of handoff

10

3.3 Channel Assignment

- Channel assignment schemes attempt to achieve
 - high degree of spectrum utilization,
 - least number of database lookups,
 - simplest algorithm employed in both the MS and network

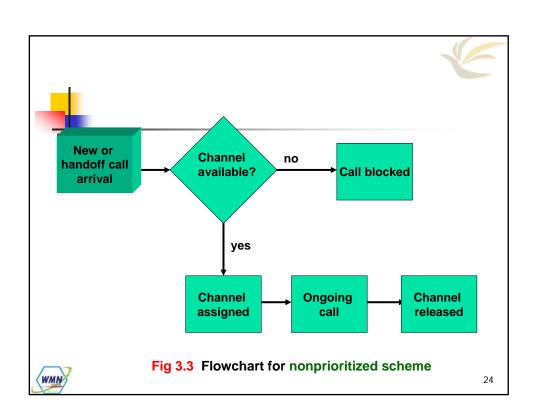
Cont.

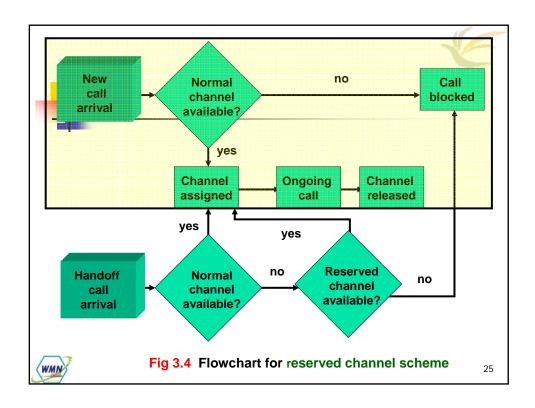
- Some trade-offs:
 - Service quality
 - Implementation complexity of the channel assignment algorithm
 - Number of database lookups
 - Spectrum utilization

21

Cout.

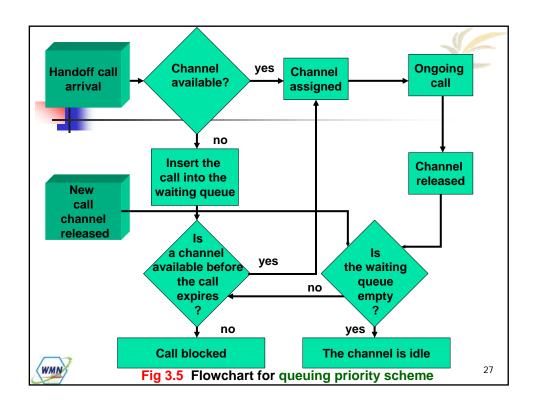
- Successful handoff access is intimately tied to the radio technology of the channel assignment process, which may be
 - Dynamic channel assignment (DCA)
 - Fixed channel assignment (FCA)
 - Quasi-static autonomous frequency assignment (QSAFA)
- Blocked call
 - There are no available channels at a busy BS

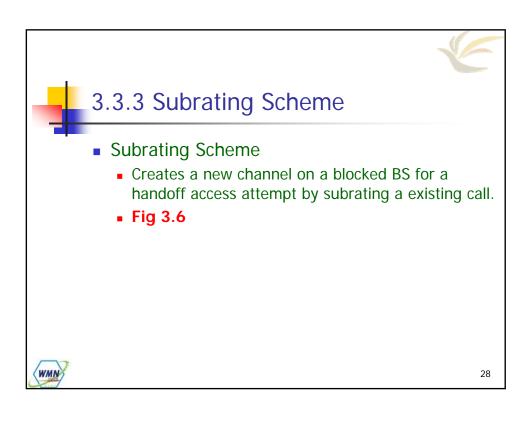


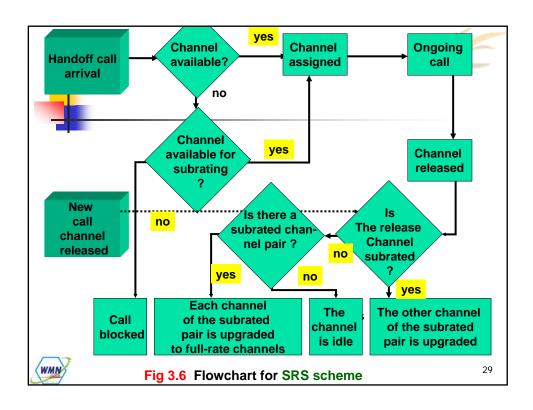


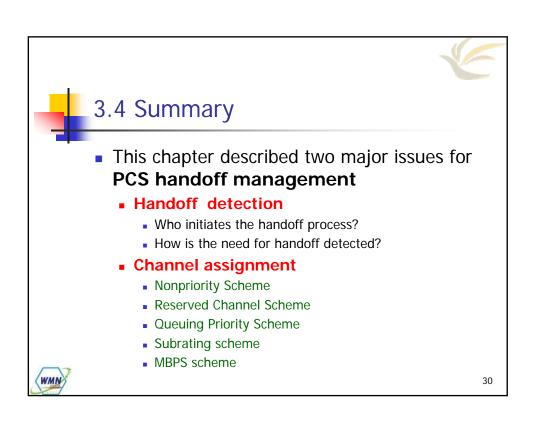
3.3.1 Nonpriority Scheme and the Reserved Channel Scheme

- Nonprioritized Scheme
 - The networks handle a handoff in the same manner as a new call attempt
 - Fig 3.3
- Reserved Channel Scheme
 - Similar to the nonprioritized scheme, except that some channels in each BS are reserved for handoff calls
 - Fig 3.4






3.3.2 Queuing priority Scheme


- Queuing Priority Scheme (Fig 3.5)
 - Based on the fact that adjacent coverage areas of BSs overlap
 - There is a considerable area where a call can be handled by either BS, which is called the handoff area
 - If no new channel is available in the new BS during handoff, the new BS buffers the handoff request in a waiting queue.
 - The MS continues to use the channel with the old BS until either a channel in the new BS becomes available

