

A SURVEY ON 3GPP HETEROGENEOUS NETWORKS

IEEE Wireless Communications • June 2011

ALEKSANDAR DAMNJANOVIC, JUAN MONTOJO, YONGBIN WEI, TINGFANG JI, TAO LUO,

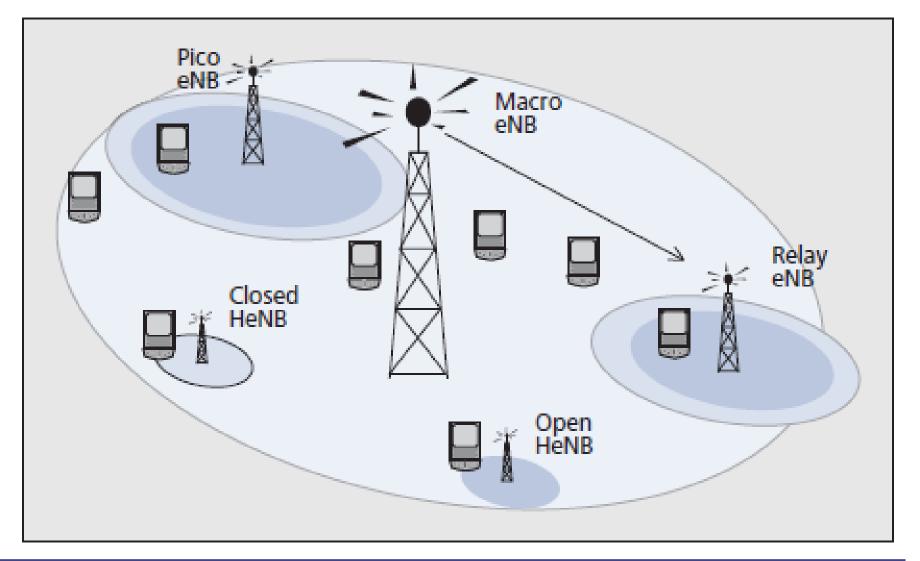
MADHAVAN VAJAPEYAM, TAESANG YOO, OSOK SONG, AND DURGA MALLADI

Outline

- Abstract
- Introduction
- Heterogeneous network topology utilizing a mix of highpower(macro) and low-power base stations
- LTE heterogeneous network nodes and their interfaces
- Interference
- LTE DL physical layer structure for FDD
- Conclusions

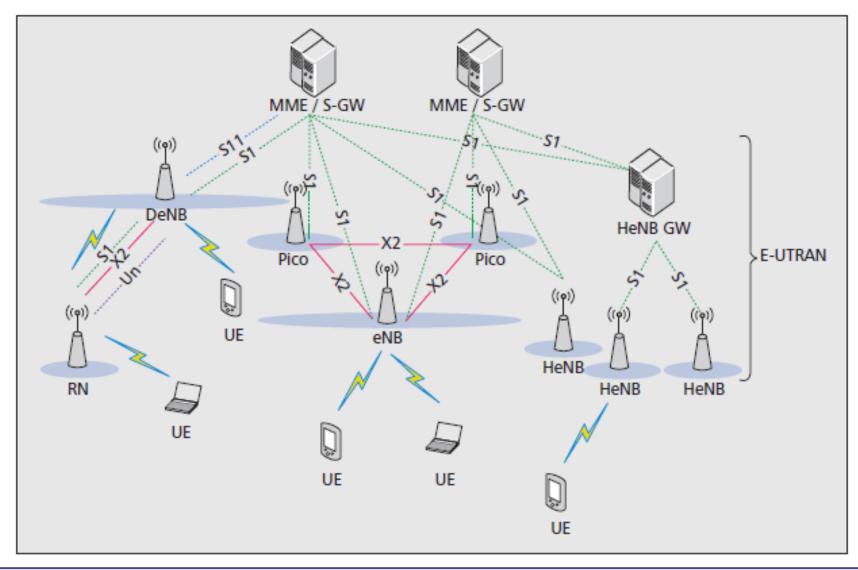
Abstract

- As the spectral efficiency of a point-to-point link in cellular networks approaches its theoretical limits, with the forecasted explosion of data traffic, there is a need for an increase in the node density to further improve network capacity.
- We survey current state of the art in heterogeneous deployments and focus on 3GPP LTE air interface to describe future trends.

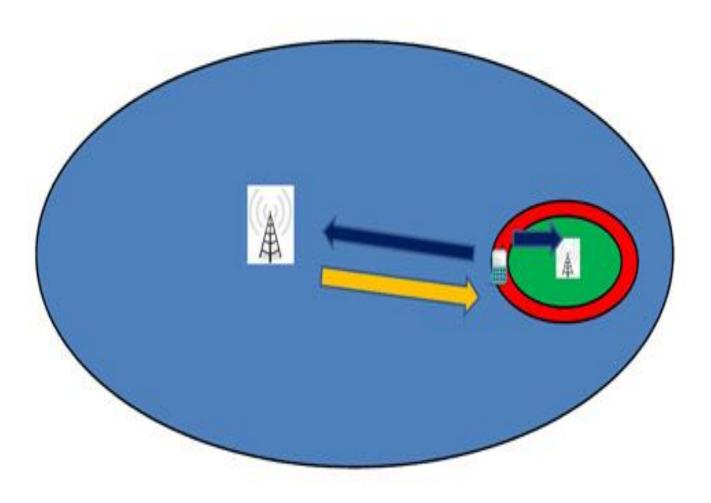


Introduction

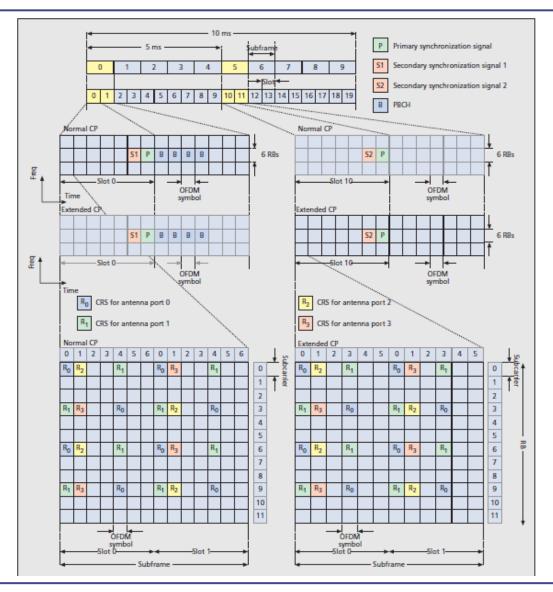
- Data traffic demand in cellular networks today is increasing at an exponential rate.
- Further improvements in system spectral efficiency are only possible by increasing the node deployment density.



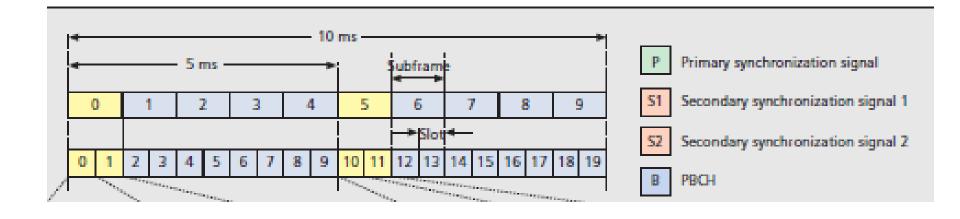
Heterogeneous network topology utilizing a mix of high-power(macro) and low-power base stations

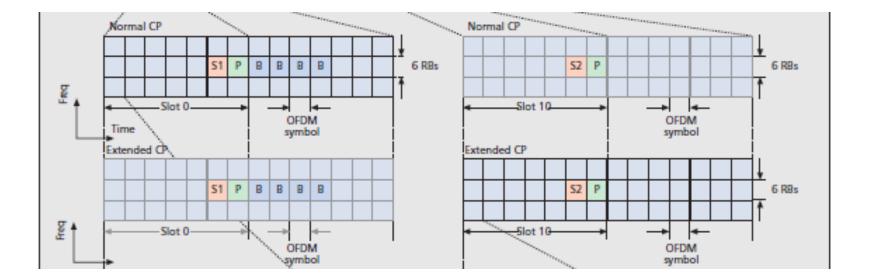


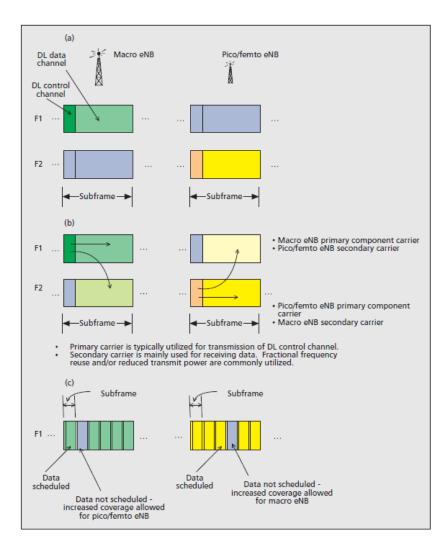
LTE heterogeneous network nodes and their interfaces



Interference

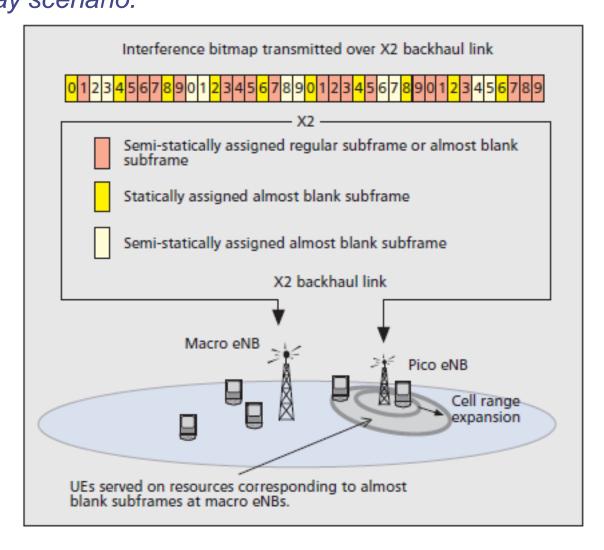



LTE DL physical layer structure for FDD

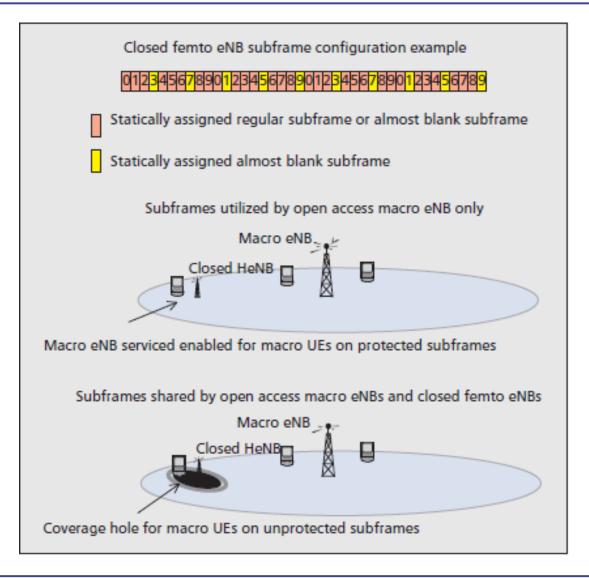


Cont.

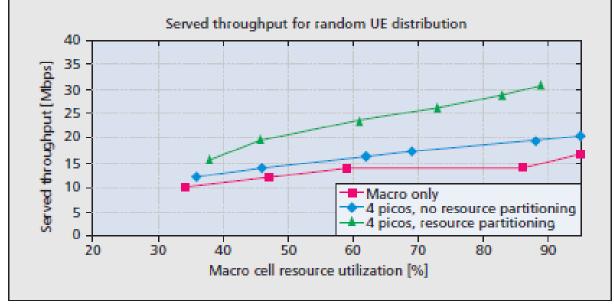
No	rma				nteni							2	~				¦	ndec		ante								· · · · · · · · · · · · · · · · · · ·	
0	1	2	З	4	5	6	0	1	2	3	4	5	6		Ţ	9	0	1	2	3	4	5	0	1	2	3	4	5	
R ₀	R ₂			R ₁			R ₀	R ₃			R ₁			0		Subcarrier	R ₀	R ₂		R ₁			R ₀	R_3		R			0
														1	4	nier													1
														2															2
R ₁	R ₃			Ro			\mathbf{R}_{1}	R ₂			R ₀			3			R ₁	R ₃		R ₀			\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{Z}}$		Ro			з
														4															4
														5															5
R_0	R ₂			R ₁			R_0	R_3			R ₁			6			R ₀	R ₂		R_1			R ₀	R_3		R			6
														7															7
														8															8
R ₁	R ₃			Ro			R ₁	R ₂			R ₀			9			R ₁	R ₃		R ₀			R ₁	R ₂		Ro			9
														10															10
														11															11



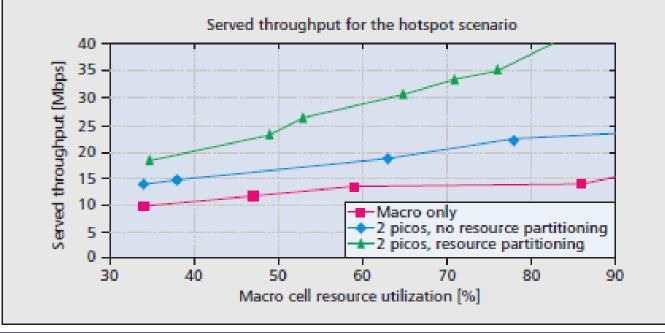
Multicarrier, carrier aggregation, and co-channel deployments



Backhaul-based interference management, illustrated on a macro/pico example for FDD systems. The same mechanism can be applied for the macro/relay scenario.


Illustration of the static interference management technique for FDD systems, applicable to the macro/closed femto scenario

Served cell throughput gains with 4 picos/macrocell — scenario 1: random UE distribution and 18 dB biasing toward picocell for resource partitioning.


Performance summary			
Served cell throughput (gain vs. macro only/gain of resource partitioning)	Macro only	4 picos, no RP	4 picos, RP
50% Macro utilization	12.3 Mbps	14.2 Mbps (1.15x/1x)	20.5 Mbps (1.67x/1.44x)
75% Macro utilization	13.9 Mbps	17.7 Mbps (1.27x/1x)	26.6 Mbps (1.91x/1.50x)

Served cell throughput gains with 2 picos/macrocell — scenario 2: hotspot and 18 dB biasing toward picocell for resource partitioning.

Performance summary			
Served cell throughput (gain vs. macro only/gain of resource partitioning)	Macro only	2 picos, no RP	2 picos, RP
50% Macro utilization	12.3 Mbps	16.9 Mbps (1.37x/1x)	24.2 Mbps (1.96x/1.43x)
75% Macro utilization	13.9 Mbps	21.7 Mbps (1.56x/1x)	35.8 Mbps (2.57x/1.65x)

Conclusions

- Heterogeneous deployment is seen as a pragmatic and cost-effective way to significantly enhance the capacity of LTE cellular networks.
- Interference management represents the first crucial component of this strategy as severe interference from the macro nodes significantly limits the offloading potential of low-power nodes.

