

A SIP-SHIM6-Based Solution Providing Interdomain Service Continuity in IMS-Based Networks

710183111 林信瀚

Amel Achour, Université Pierre & Marie Curie Kamel Haddadou, Gandi SAS Brigitte Kervella, Université Pierre & Marie Curie Guy Pujolle, Université Pierre & Marie Curie and IT Convergence and Engineering, POSTECH

Outline

- Introduction
- Site Multihoming by IPv6 Intermediation (SHIM6)
- IP Multimedia Subsystem(IMS) Overview
- SHIM6 and IMS integration for seamless service continuity
- Interdomain IMS Session Management
- End-to-End Delay Performance
- Handoff result analysis
- Impact of the SHIM6/P-SIP Combination on the Performances
- Conclusion

Introduction

- Wireless networks are largely deployed, and the number of smart phones has boomed.
- This has resulted in the emergence of multihoming
 - access to services anywhere at any time from any network, as predicated by the always best connected (ABC) concept,
 - consider using different access networks simultaneously through several interfaces
- It allows a user more flexibility and more services even when s/he is moving, such as ubiquitous access, resiliency, reliability, and bandwidth aggregation.

Cont.

- A solution for interdomain mobility management with endto-end service continuity of communication. We combine
 - A Multihoming protocol (SHIM6), which ensures a seamless network change
 - IMS architecture, which allows the establishment of multimedia sessions with quality of service.
- Enables a mobile terminal to change its access network seamlessly, without any application disruption.
 - Implement a Proxy-SIP inside the terminal to manage the signaling procedures.

Site Multihoming by IPv6 Intermediation (SHIM6)

- Provides site multihoming management for IPv6 in a host centric view.
- SHIM6 introduces a sublayer in the layer 3 of a terminal, which splits the double function of an IP address as locator and identifier.
 - The first IP address a terminal uses to communicate is its identifier, called the upper layer identifier (ULID). The identifier or ULID of a SHIM6 terminal remains unchanged for upper layers, even if the active IP address changes.
 - The locators correspond to the remaining set of IPv6 addresses that are associated with the terminal.
- The mapping between ULID and locators is performed in the SHIM6 sublayer.

Cont.

- SHIM6 first initiates a context establishment exchange between these terminals to exchange their available sets of IP addresses. At this step, it also establishes a security association to identify these hosts safely.
- Reachability Protocol (REAP)
 - Detection : Detects disconnections in the current path by sending periodic keep alive messages
 - Locator pair exploration : represents the shortest path available between communicating hosts from the list of locators exchanged at the context establishment.

IP Multimedia Subsystem(IMS) Overview

- A framework designed and standardized by the 3GPP
- Offers an all-IP based network, and can support real-time application sessions and non-real time ones.
- Proxy-call state control function (PCSCF)
 - All messages transmitted by or to the terminal pass through the P-CSCF.
- Interrogating-CSCF (I-CSCF)
 - which is an interdomain gateway
- Serving-CSCF (S-CSCF)
 - which maintains the sessions
- Home Subscriber Server
 - the database where a user's data and the services to which they have subscribed are stored

Cont.

Registration Procedure

Session Initiation Procedure

SHIM6 and IMS integration for seamless service continuity

- SHIM6 protocol
 - Manages interface switching in a seamless and secure way
- IMS architecture
 - Supports real-time session negotiation and management, guaranteeing an end-to-end quality of service level to the ongoing sessions.
- With such a combination and the fact that SHIM6 makes the interface change transparent, the implementation of a proxy is needed to handle the session renegotiation procedure.
- With the SHIM6 protocol offering an end-to-end solution, we choose to implement the P-SIP inside the terminal because, from our point of view, it is important to keep this feature.

Department of Computer Science and Information Engineering, NTPU

Interdomain IMS Session Management

- Session management considering that the access networks belong to independent IMSs
- terminal has a subscription with independent operators for each access network
- Reactive mode and Proactive modes.

User equipment			nt → ←	IMS2			IMS1			Correspondent	ndent rk	Correspondent equipment		
	E P-SIP SHIM6		IM6 A	AN P-CSCF I-CSCF HSS S-		SS S-CSCF	AN P-CSCF		SS S-CSCF P-CSCF AN		AN	SHIM6 P-SIP UE		
establishment flow	VITE {	CallID1, I	P-src=@UE1	, IP-dest	=@CE1}		ļ,	INVITE ,	INVITE	INVITE {ÇallıD	1, IP-src=@	وَUE1, IF	∙-dest=@	ÇE1
		Res			urce allocation						Resourc	e alloca	tion	
	9 ОК {	ÇallID1,	P-src=@UE	l, IP-dest	t=@CE1}			200 OK	200 OK	200 OK {CallIC	1, IP-src=(@UE1, II	P-dest=@	¢€E
	CK {C	alliD1, iP	src=@UE1,	IP-dest=	@CE1}			ACK	ACK	ACK {CallID1	, IP-src=@	UE1, IP-	dest=@C	:Ę1}
							RTP			1				1
u u			1	S	HIM6 context est	ablishment {ULID-	src=IP-	src=@UE1. IP-de	st=ULID-c	dest=CE1}				11
ssic							RTP		1	·····,				
S.											-			1
		Failu	re detection											<u>+</u> ,
ion recovery flow	Media loss	Notification message SHIM6					failure	recovery						
		INVITE {	CallID2, IP-si	c=@UĘ	2, IP-dest=@CE1	}		INVITE		INVITE {CallID	2, IP-src=@	⊉UE2, IF	'-dest=@	¢E1
		Resource	e allocation							-	Resource	e allocat	tion	
		200 OK ·	CallID2, IP-s	rc=@UE	2, IP-dest=@CE1	}		200 OK		200 OK {Çallı	2, IP-src=0	@UE2, II	P-dest=@	¢€[1
		ACK {C	allID2, IP-sro	=@UE2	, IP-dest=@CE1}			ACK		ACK {CallID2	, IP-src=@	UE2, IP-	dest=@C	:E1}
		Notificat	on response		, ,								_	
	♥	SHIM6 path change {ULID-src@UE1, IP-src=@UE2, ULID-dest=IP-dest=@CE1}												
ess							RTP	D) (5	1					
S		BAF {C	alliD1, IP-src	=@UE1,	IP-dest=@CE1}			BYE ,		BYE {CallID1	H-src=@	<u>JEI, IP-(</u>	dest = @C	E1}
	200 OK {CallID1, IP-src=@UE1, IP-dest=@CE1}					200 OK	4	200 OK {CallIE	1, $IP-src = 0$	<u>@</u> UE1, Ⅱ	P-dest=@)CE		

igure 3. Session establishment and session recovery flows in a reactive handoff mode with two independent IMSs

Proactive Handoff Mode

- In this mode, a decision function has been added to anticipate the interface switching.
- The resource allocation and establishment of the new session are realized while the terminal is still using its old network.
- The P-SIP has enough time to initiate the session establishment according to the new location.
- Once the new session is established, a notification response is sent back to SHIM6. At this point, SHIM6 enables the use of the new locators, so the traffic is redirected to the new location, IMS2.
- In the proactive mode, the media loss is reduced to the duration of the SHIM6 path change.

End-to-End Delay Performance

Handoff result analysis

Figure 5. *Handoff result analysis for non-optimized, reactive and proactive handoff modes.*

Department of Computer Science and Information Engineering, NTPU

國立臺北大學

資訊

程學系

Impact of the SHIM6/P-SIP Combination on the Performances

Figure 6. Impact of the SHIM6/P-SIP combination on the terminal performances: a) session establishment delay; b) resource consumption overhead; c) the handover delay function of the number of simultaneous sessions.

CONCLUSION

- An interdomain mobility management scheme for multihomed mobile terminals with QoS guarantee.
- This solution is implemented in the terminal and does not involve any change in the network components.
- Demonstrate its effectiveness to reduce significantly the handover delay, especially in a proactive mode.
- It would be interesting to investigate more sophisticated criteria such as user preferences or application needs and study their impact on the protocol performance.

