Chapter 14: Energy Harvesting Sensor Nodes: Survey and Implication

Department of CSIE National Taipei University

1

Outline

Introduction

- Energy Harvesting Sensor Nodes
- Energy Harvesting Sensor Nodes And Applications
- Implications On Sensor Network System And Solutions

Introduction: Sensor Network

Sensor Network

- A network of collaboration embedded devices (sensor nodes).
- Used to sense and collect data for application specific analysis.

Application

- Sensing modality
- Sensor node computation
- Communication
- Storage capability
- Cost and size of each node
- Type of power source
- Architecture for deployment
- Protocols for data dissemination
- To name a few.....

Introduction: Battery-powered sensor nodes

Application

- Habitat monitoring
- Vehicle monitoring

Restriction

- Finite battery capacity
- Several solution techniques have been proposed to maximize the lifetime.
 - Optimize and adapt energy usage.
 - But, do not preclude energy-related inhibitions.

Introduction: Energy harvesting

- Harnessing energy from the environment or other energy sources.
- Challenge
 - Estimating the periodicity and magnitude of the harvestable sources.
 - Deciding which parameters to tune.
 - Avoid premature energy depletion before the next recharge cycle.

5

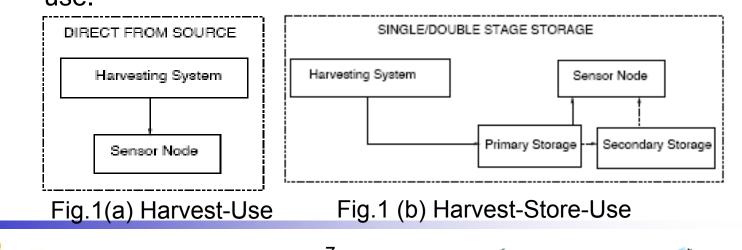
Introduction: Discussion

- Basic of energy harvesting techniques.
- Details of energy sources used for harvesting and corresponding energy storage technologies.
- Energy harvesting architectures.
- Examples of energy harvesting systems and applications based on these systems
- Implications of energy harvesting on design of sensor network applications and solution.

Energy Harvesting Sensor Nodes

Typical energy harvesting system

- Harvesting Architecture
 - Harvest-Use
 - Harvest-Store-Use
- Energy source
 - Ambient Energy Sources
 - Human Power
- Energy Conversion Mechanisms
- Storage Technologies
 - Rechargeable battery


Harvesting Architecture

Harvesting Architecture

- Harvest-Use
- Harvest-Store-Use
- Harvest-Use
 - Energy is harvested just-in-time for use.

Harvest-Store-Use

Energy is harvested whenever possible and stored for future use.

Energy Sources

Solar Energy

- Uncontrollable
- Predictable
- Solar panel
- Mechanical Energy
 - Piezo-electric material
 - PVDF
 - PZT
 - Controllable
- Wind Energy
 - Rotating arm connected

Energy source

Energy Source	Characteristics	Amount of Energy Available	Harvesting Technology	Conversion Efficiency	Amount of Energy Harvested
Solar[25], [26], [27], [28]	Ambient, Uncontrollable, Predictable	$100mW/cm^2$	Solar Cells	15%	$15mW/cm^2$
Wind[28]	Ambient, Uncontrollable, Predictable	-	Anemometer	-	1200mWh/day
Finger motion[22], [24]	Active human power, Fully controllable	19mW	Piezoelectric	11%	2.1mW
Footfalls[22], [24]	Active human power, Fully controllable	67W	Piezoelectric	7.5%	5W
Vibrations in indoor environments[29]	Ambient, Uncontrollable, Unpredictable	-	Electromagnetic Induction	-	$0.2mW/cm^2$
Exhalation[24]	Passive human power, Uncontrollable, Unpredictable	1W	Breath masks	40%	0.4W
Breathing[24]	Passive human power, Uncontrollable, Unpredictable	0.83W	Ratchet-flywheel	50%	0.42W
Blood Pressure[24]	Passive human power, Uncontrollable, Unpredictable	0.93W	Micro-generator	40%	0.37W

Table I Listing and characterization of energy sources

Storage Technologies

Battery Type	Nominal Voltage	Capacity	Weight Energy	Power Density	Efficiency	Self Discharge	Memory Effect?	Charging Method	Recharge Cycles
Type	vonage		Density	Density		Discharge	Lucci.	Method	Cycles
	(V)	(mAh)	(Wh/kg)	(W/kg)	(%)	(%/month)			
SLA	6	1300	26	180	70-92	20	No	Trickle	500-800
NiCd	1.2	1100	42	150	70-90	10	Yes	Trickle	1500
NiMH	1.2	2500	100	250-1000	66	20	No	Trickle	1000
Li-ion	3.7	740	165	1800	99.9	<10	No	Pulse	1200
Li-polymer	3.7	930	156	3000	99.8	<10	No	Pulse	500-1000

Table II Comparison of rechargeable battery technologies

Energy Harvesting Sensor Nodes And Applications Solar energy

- Active user power
 - Piezoelectric-based Harvesting
 - Shoe-powered RF Tag System
 - Wireless, Self-Powered Push-Button Controller
- Wind energy
- RF energy

Solar Energy

Nodes with Battery-based Storage

- Hydro Watch [26]
- Heliomote [27]
- Fleckl [46]

Nodes with Supercapacitor-based Storage

- Everlast [34]
- Sunflower [35]
- Nodes with Tiered Storage
 - Prometheus [25]
 - AmbiMax [28]
- Application
 - ZebraNet [58]

Table III Specifications of Solar Energy Harvesting Sensor Nodes

Node	Solar Panel Power (mW)	Solar Panel Size (inxin)	Energy Availability (mWh /day)	Storage Type (Y/N)	Battery Type	Battery Capacity (mAh)	Sensor Node Used	MPPT Usage
Heliomote[27]	190	3.75×2.5	1140	Battery	Ni-MH	1800	Mica2	No
HydroWatch[26]	276	2.3×2.3	139	Battery	Ni-MH	2500	TelosB	Yes
Fleck1[46]	-	4.53 × 3.35	2100	Battery	Ni-MH	2500	NA	No
Everlast[34]	450	2.25 × 3.75	2700	Supercap (100F)	NA	NA	NA	Yes
SolarBiscuit[51]	150	2×2	900	Supercap (1F)	NA	NA	NA	No
Sunflower[35]	4 PIN photo diodes 20mW	NA	100	Supercap (0.2F)	NA	NA	NA	No
Prometheus[25]	130	3.23 × 1.45	780	Supercap (two 22F) & Battery	Li-poly	200	Telos	No
AmbiMax[28]	400	3.75x2.5	1200	Supercap (two 22F) & Battery	Li-poly	200	Telos	Yes

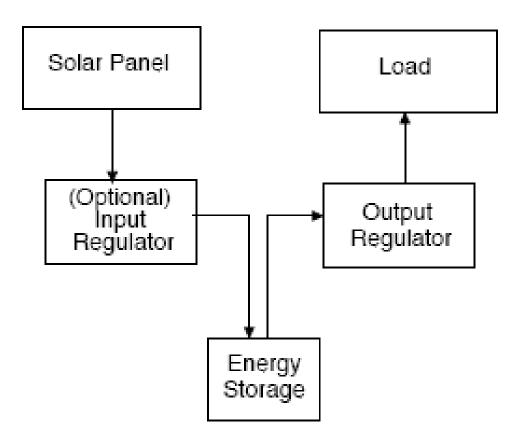


Fig.2 (b) Hydro Watch power subsystem architecture

Everlast [34]

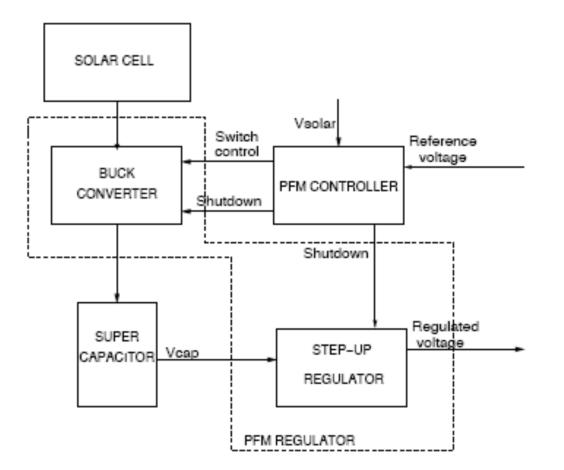


Fig.4 Block diagram of Everlast's energy harvesting sybsystem

Promethus [25]

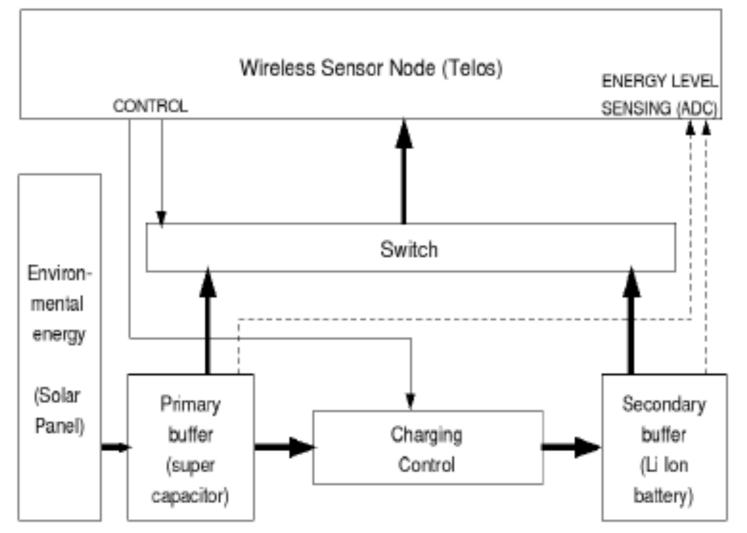


Fig.5 Promethus energy harvesting architecture

Promethus [25]

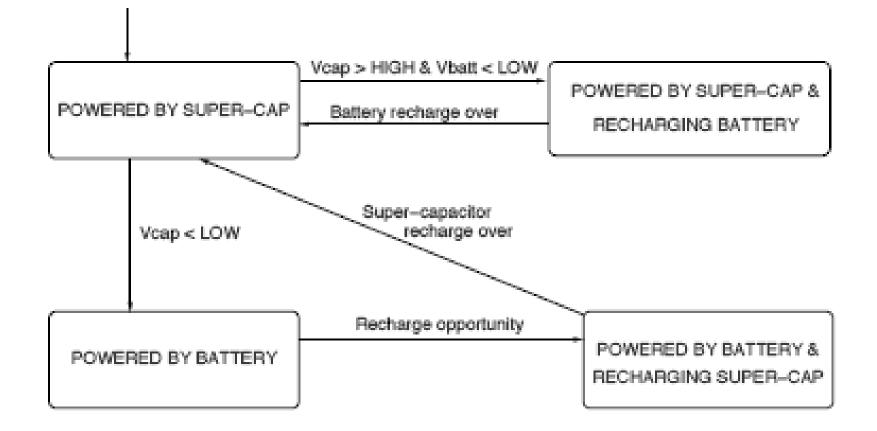


Fig.6 State diagram of Prometheus driver.

Implications On Sensor Network System And Solutions

- Energy Neutral Operation
 - Node-level energy neutrality
 - Application-level energy neutrality

Performance Adaptation

- Energy Prediction Methods
- Node-level Adaptations
 - Duty-Cycling
 - Transmit Power
 - Sensing Reliability
 - Transmission Scheduling
- Network-level Design
 - Routing
 - Clustering
 - Data Collection
 - Miscellaneous

Application-level energy neutrality

- Meeting application requirements at all.
 - Providing continuous sensing coverage to a region.
- Co-ordination and cooperation amongst nodes to tune system parameters.
- Consider two closely placed nodes.
 - Adjust their parameters such that one is ON and the other OFF.
 - The OFF-node becomes operational only when the ON-node fail to meet application requirements.

Energy Prediction Methods

- Energy harvesting framework (EEHF) [62]
 - Predict a node's effective energy.
- Enhanced-EEHF [63]
 - Extends EEHF.
- Exponentially Weighted Moving-Average (EWMA)
 - Divided into 48 half hour slots.

Energy harvesting framework (EEHF) [62]

- Predict a node's effective energy.
- A day as a single epoch.
- Energy consumption and energy availability over finite number of previous epochs, to predict the energy available in the next epoch.
- Effective energy is formulated as a weighted function.
 - Predicted expected energy
 - Energy consumption
 - Battery level

Enhanced-EEHF [63]

- Extends EEHF.
- Uses the concept of rounds within each cycle/epoch.
- Obtains a first estimate of the expected energy for a round of a particular cycle.
- Using the estimated and generated energy of the same round of the previous cycle.

Exponentially Weighted Moving-Average (EWMA) ■ A day divided into 48 half hour slots.

$$\overline{x}(i) = \alpha \overline{x}(i-1) + (1-\alpha)x(i)$$

• $\overline{x}(i)$: Average energy availability of a slot.

- x(i) : Actual generated energy in slot i.
- α : Weighting factor.
- α of 0.5 was empirically found to be an optimal value for minimum prediction error.

Node-level Adaptations

Duty-Cycling

- The fraction of time a node is ON in a cycle of ON and OFF durations.
- Transmit Power
 - Wireless radio
- Sensing Reliability
 - The quality of information provided by the sensor.
- Transmission Scheduling
 - Aggregate data from various nodes at intermediate nodes and transmit collective information.

Network-level Design

Routing

- Depend on gradients from the data source to sink for route setup.
- Active energy saving protocols
- Passive energy saving protocols
- Topology control protocols
- Clustering
 - To route packets in sensor networks through formation of clusters.

Conclusions

- In this paper, they discussed various aspects of energy harvesting systems.
 - Presented basic concepts of harvesting systems—architectures, types of harvestable energy sources, and storage technologies.
- Described details of existing energy harvesting sensor nodes and applications
 - Solar energy
- Presented insights into implications of recharge opportunities on node-level operations and design of sensor network applications and solutions.

Question

How's the Prometheus energy harvesting system work?

What's the different between EEHF, E-EEHF and EWMA?

Chapter 14: Energy Harvesting Sensor Nodes: Survey and Implication

Prof. Yuh-Shyan Chen Department of CSIE National Taipei University

Outline

Introduction

- Energy Harvesting Sensor Nodes
- Energy Harvesting Sensor Nodes And Applications
- Implications On Sensor Network System And Solutions

Introduction: Sensor Network

Sensor Network

- A network of collaboration embedded devices (sensor nodes).
- Used to sense and collect data for application specific analysis.

Application

- Sensing modality
- Sensor node computation
- Communication
- Storage capability
- Cost and size of each node
- Type of power source
- Architecture for deployment
- Protocols for data dissemination
- To name a few.....

Introduction: Battery-powered sensor nodes

Application

- Habitat monitoring
- Vehicle monitoring

Restriction

- Finite battery capacity
- Several solution techniques have been proposed to maximize the lifetime.
 - Optimize and adapt energy usage.
 - But, do not preclude energy-related inhibitions.

Introduction: Energy harvesting

- Harnessing energy from the environment or other energy sources.
- Challenge
 - Estimating the periodicity and magnitude of the harvestable sources.
 - Deciding which parameters to tune.
 - Avoid premature energy depletion before the next recharge cycle.

5

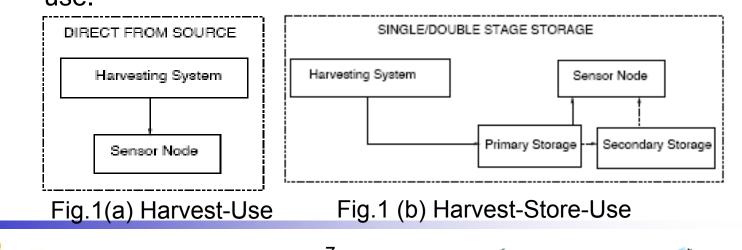
Introduction: Discussion

- Basic of energy harvesting techniques.
- Details of energy sources used for harvesting and corresponding energy storage technologies.
- Energy harvesting architectures.
- Examples of energy harvesting systems and applications based on these systems
- Implications of energy harvesting on design of sensor network applications and solution.

Energy Harvesting Sensor Nodes

Typical energy harvesting system

- Harvesting Architecture
 - Harvest-Use
 - Harvest-Store-Use
- Energy source
 - Ambient Energy Sources
 - Human Power
- Energy Conversion Mechanisms
- Storage Technologies
 - Rechargeable battery


Harvesting Architecture

Harvesting Architecture

- Harvest-Use
- Harvest-Store-Use
- Harvest-Use
 - Energy is harvested just-in-time for use.

Harvest-Store-Use

Energy is harvested whenever possible and stored for future use.

Energy Sources

Solar Energy

- Uncontrollable
- Predictable
- Solar panel
- Mechanical Energy
 - Piezo-electric material
 - PVDF
 - PZT
 - Controllable
- Wind Energy
 - Rotating arm connected

Energy source

Energy Source	Characteristics	Amount of Energy Available	Harvesting Technology	Conversion Efficiency	Amount of Energy Harvested
Solar[25], [26], [27], [28]	Ambient, Uncontrollable, Predictable	$100mW/cm^2$	Solar Cells	15%	$15mW/cm^2$
Wind[28]	Ambient, Uncontrollable, Predictable	-	Anemometer	-	1200mWh/day
Finger motion[22], [24]	Active human power, Fully controllable	19mW	Piezoelectric	11%	2.1mW
Footfalls[22], [24]	Active human power, Fully controllable	67W	Piezoelectric	7.5%	5W
Vibrations in indoor environments[29]	Ambient, Uncontrollable, Unpredictable	-	Electromagnetic Induction	-	$0.2mW/cm^2$
Exhalation[24]	Passive human power, Uncontrollable, Unpredictable	1W	Breath masks	40%	0.4W
Breathing[24]	Passive human power, Uncontrollable, Unpredictable	0.83W	Ratchet-flywheel	50%	0.42W
Blood Pressure[24]	Passive human power, Uncontrollable, Unpredictable	0.93W	Micro-generator	40%	0.37W

Table I Listing and characterization of energy sources

Storage Technologies

Battery Type	Nominal Voltage	Capacity	Weight Energy	Power Density	Efficiency	Self Discharge	Memory Effect?	Charging Method	Recharge Cycles
Type	vonage		Density	Density		Discharge	Lucci.	Method	Cycles
	(V)	(mAh)	(Wh/kg)	(W/kg)	(%)	(%/month)			
SLA	6	1300	26	180	70-92	20	No	Trickle	500-800
NiCd	1.2	1100	42	150	70-90	10	Yes	Trickle	1500
NiMH	1.2	2500	100	250-1000	66	20	No	Trickle	1000
Li-ion	3.7	740	165	1800	99.9	<10	No	Pulse	1200
Li-polymer	3.7	930	156	3000	99.8	<10	No	Pulse	500-1000

Table II Comparison of rechargeable battery technologies

Energy Harvesting Sensor Nodes And Applications Solar energy

- Active user power
 - Piezoelectric-based Harvesting
 - Shoe-powered RF Tag System
 - Wireless, Self-Powered Push-Button Controller
- Wind energy
- RF energy

Solar Energy

Nodes with Battery-based Storage

- Hydro Watch [26]
- Heliomote [27]
- Fleckl [46]

Nodes with Supercapacitor-based Storage

- Everlast [34]
- Sunflower [35]
- Nodes with Tiered Storage
 - Prometheus [25]
 - AmbiMax [28]
- Application
 - ZebraNet [58]

Table III Specifications of Solar Energy Harvesting Sensor Nodes

Node	Solar Panel Power (mW)	Solar Panel Size (inxin)	Energy Availability (mWh /day)	Storage Type (Y/N)	Battery Type	Battery Capacity (mAh)	Sensor Node Used	MPPT Usage
Heliomote[27]	190	3.75×2.5	1140	Battery	Ni-MH	1800	Mica2	No
HydroWatch[26]	276	2.3×2.3	139	Battery	Ni-MH	2500	TelosB	Yes
Fleck1[46]	-	4.53 × 3.35	2100	Battery	Ni-MH	2500	NA	No
Everlast[34]	450	2.25 × 3.75	2700	Supercap (100F)	NA	NA	NA	Yes
SolarBiscuit[51]	150	2×2	900	Supercap (1F)	NA	NA	NA	No
Sunflower[35]	4 PIN photo diodes 20mW	NA	100	Supercap (0.2F)	NA	NA	NA	No
Prometheus[25]	130	3.23 × 1.45	780	Supercap (two 22F) & Battery	Li-poly	200	Telos	No
AmbiMax[28]	400	3.75x2.5	1200	Supercap (two 22F) & Battery	Li-poly	200	Telos	Yes

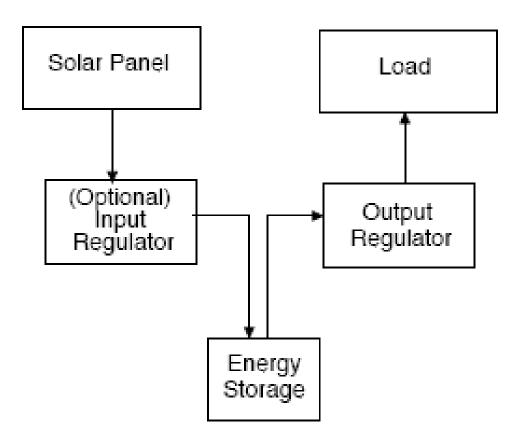


Fig.2 (b) Hydro Watch power subsystem architecture

Everlast [34]

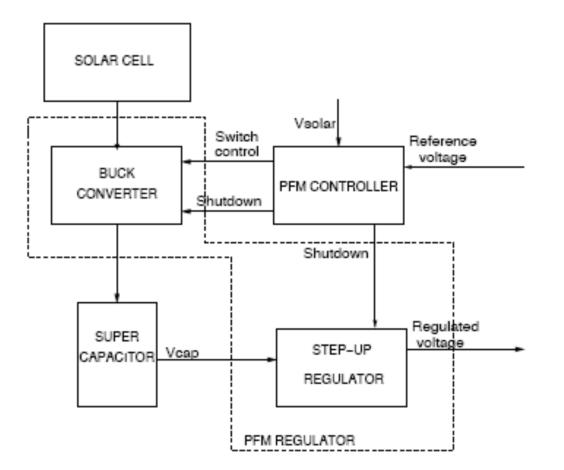


Fig.4 Block diagram of Everlast's energy harvesting sybsystem

Promethus [25]

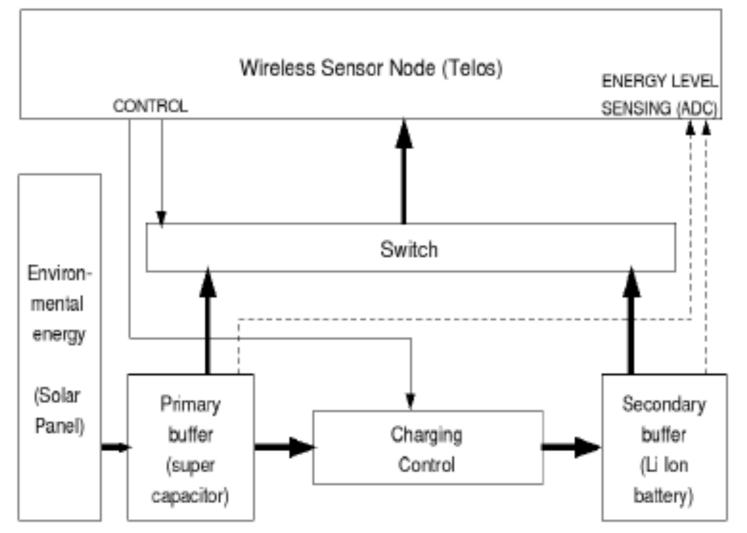


Fig.5 Promethus energy harvesting architecture

Promethus [25]

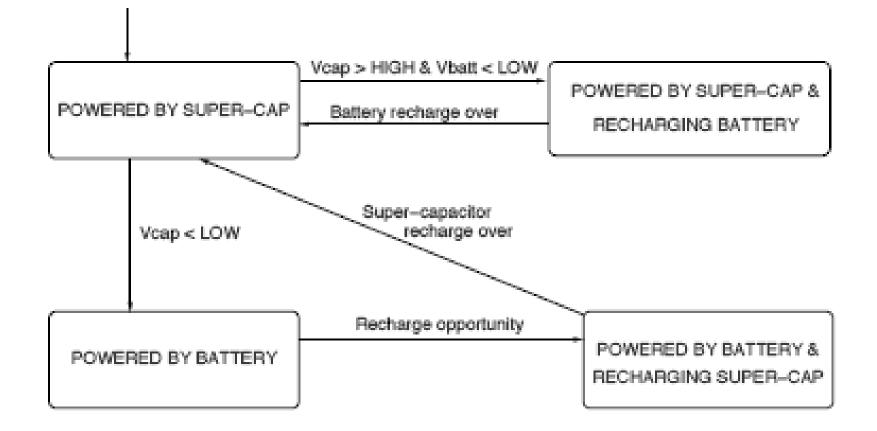


Fig.6 State diagram of Prometheus driver.

Implications On Sensor Network System And Solutions

- Energy Neutral Operation
 - Node-level energy neutrality
 - Application-level energy neutrality

Performance Adaptation

- Energy Prediction Methods
- Node-level Adaptations
 - Duty-Cycling
 - Transmit Power
 - Sensing Reliability
 - Transmission Scheduling
- Network-level Design
 - Routing
 - Clustering
 - Data Collection
 - Miscellaneous

Application-level energy neutrality

- Meeting application requirements at all.
 - Providing continuous sensing coverage to a region.
- Co-ordination and cooperation amongst nodes to tune system parameters.
- Consider two closely placed nodes.
 - Adjust their parameters such that one is ON and the other OFF.
 - The OFF-node becomes operational only when the ON-node fail to meet application requirements.

Energy Prediction Methods

- Energy harvesting framework (EEHF) [62]
 - Predict a node's effective energy.
- Enhanced-EEHF [63]
 - Extends EEHF.
- Exponentially Weighted Moving-Average (EWMA)
 - Divided into 48 half hour slots.

Energy harvesting framework (EEHF) [62]

- Predict a node's effective energy.
- A day as a single epoch.
- Energy consumption and energy availability over finite number of previous epochs, to predict the energy available in the next epoch.
- Effective energy is formulated as a weighted function.
 - Predicted expected energy
 - Energy consumption
 - Battery level

Enhanced-EEHF [63]

- Extends EEHF.
- Uses the concept of rounds within each cycle/epoch.
- Obtains a first estimate of the expected energy for a round of a particular cycle.
- Using the estimated and generated energy of the same round of the previous cycle.

Exponentially Weighted Moving-Average (EWMA) ■ A day divided into 48 half hour slots.

$$\overline{x}(i) = \alpha \overline{x}(i-1) + (1-\alpha)x(i)$$

• $\overline{x}(i)$: Average energy availability of a slot.

- x(i) : Actual generated energy in slot i.
- α : Weighting factor.
- α of 0.5 was empirically found to be an optimal value for minimum prediction error.

Node-level Adaptations

Duty-Cycling

- The fraction of time a node is ON in a cycle of ON and OFF durations.
- Transmit Power
 - Wireless radio
- Sensing Reliability
 - The quality of information provided by the sensor.
- Transmission Scheduling
 - Aggregate data from various nodes at intermediate nodes and transmit collective information.

Network-level Design

Routing

- Depend on gradients from the data source to sink for route setup.
- Active energy saving protocols
- Passive energy saving protocols
- Topology control protocols
- Clustering
 - To route packets in sensor networks through formation of clusters.

Conclusions

- In this paper, they discussed various aspects of energy harvesting systems.
 - Presented basic concepts of harvesting systems—architectures, types of harvestable energy sources, and storage technologies.
- Described details of existing energy harvesting sensor nodes and applications
 - Solar energy
- Presented insights into implications of recharge opportunities on node-level operations and design of sensor network applications and solutions.

Question

- 1. What is detailed operations of the Prometheus energy harvesting system ?
- 2. What's the difference between EEHF, E-EEHF and EWMA protocols ?

