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Abstract— Safety Applications in Vehicular Ad-Hoc
Networks (VANETs) pose tough requirements to the
communication system: It has to strictly follow given
quality-of-service constraints or to get along with very
sparse or very dense networks. While the networking
community works hard on these problems, their solu-
tions are very often hard to integrate into well-known
protocol or network-programming architectures. On
the other hand, vehicular safety experts desire well-
defined programming interfaces for the communica-
tion part of their applications. Very often, this is
solved by using only the most simple network proto-
cols such as single-hop broadcast or simplistic flood-
ing, neglecting results of Ad-Hoc research. In this pa-
per, we study the problems created by this dilemma
and propose SLOPE (Self-Organizing Communication
with Protocol Elements), an attempt to separate pro-
tocol functionality in application and communication
domain leaving the common protocol practice with net-
work layering and sockets. With this system and our
current approach of implementation, creating VANET
safety application protocols becomes as simple as ex-
tending a Java class and filling out some methods.

I. INTRODUCTION

Vehicular Ad-Hoc Networks (VANETs) are a spe-
cial kind of Mobile Ad-Hoc Networks (MANETs),
where wireless-equipped (road) vehicles form a net-
work without any additional infrastructure. While
many communication scenarios exist for these net-
works, government-sponsored research activities like
the German Network-on-Wheels project [1] mainly
focus on the application of VANETs to increase ve-
hicular safety with extra room for applications in-
creasing driver convenience.

The quest for a communication system to allevi-
ate active vehicular safety has led to a break with
many conventional paradigms of protocol architec-
tures. Such a system is related as much to traditional

wireless IP networks as to sensor networks which use
quite different types of network protocols. [2] exten-
sively discusses challenges in this area and states that
a network stack in such a safety-critical system can
hardly be regarded as separable as in IP networks. On
the contrary: We expect that VANETs will be used
with highly specialized protocols that require only a
minimal amount of packets being sent, since one ap-
plications’ packet might prevent another application
from delivering a vital message. Thus, in the re-
mainder of this work, we will restrict the discussion
to a communication system and communication pro-
tocols that only serve safety purposes. We assume
that the system operates on a government-regulated
safety-only frequency and that any other communica-
tion would occur on a different channel. In the follow-
ing, we will derive the basic principles upon which we
will build our system.

Why is single-hop broadcast insufficient? While
on one hand people working on communications
mostly do not have the knowledge required to de-
sign and tune vehicular safety applications, vehicu-
lar safety engineers are mostly unaware of the conse-
quences that the sending of a packet might have on
the own or other applications’ functioning. Let us il-
lustrate this by an example: Consider an application
that is disseminating information about an accident.
A simple approach would be to use single-hop broad-
cast to send a message to all neighbors and to simply
repeat the packet if receiving one. To avoid the packet
to circulate forever, a time-to-live value, that will be
decremented on every retransmission, is added. Ad-
ditionally, the application will discard packets that are
not relevant for the neighborhood. While this is a
straight-forward solution to the communication prob-
lem, it will certainly not fulfill its task under all net-
work conditions. The reason is that single-hop broad-
cast is unacknowledged and it can consequently be
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destroyed by collisions. Additionally, there can be
an explosion of nodes re-sending a packet, when the
neighbors, and then the neighbors of the neighbors,
etc., try to re-broadcast it. In literature, this effect is
known as the “Broadcast Storm Problem” [3]. There
are several methods like delaying the re-transmission
for a random time to conquer this problem [4], and
they require a distributed flooding algorithm.

Why does not (optimized) flooding solve the
problem, either? In accordance with the identified
problems, the next step is to require the communi-
cation system to provide a flooding mechanism that
uses the available know-how. But still, that might
not be the solution for all the problems, since every
data packet is doomed to travel un-altered for the se-
lected number of hops and every car that tries to add
information has to send a different packet. Obviously,
the communication system is not able to detect re-
dundancy, since it does not understand the packets’
contents. Additionally, flooding stops immediately at
the borders of the current network partition, leaving
it to the application to repeat the floods to reach cars
that were in another partition when the flooding took
place. That potentially creates a lot of redundancy.

What about storing the packets and sending
them to new neighbors? To overcome the restric-
tions induced by partitions, one could store the packet
destined for an area and resend it whenever a radio
packet from a node that was not considered a neigh-
bor before, is received. However, this solution also
has some shortcomings: (a) the store would obvi-
ously be limited and thus it is likely to overrun at
a partition’s edge, (b) for every packet received the
whole packet-store would have to be checked, requir-
ing CPU time and creating delay, and (c) any node
carrying the packets would create a huge concentrated
network load whenever two partitions join. Addition-
ally, the packet store would also contain a lot of re-
dundancy, since VANET events like the detection of
an accident or certain road conditions are usually cor-
related and cause more than one car to issue packets.

Where do we go from here? To solve the dis-
cussed problems, the system should combine the abil-
ities of network and application layer: it should make
use of the application’s ability to understand the pack-
ets contents in order to eliminate redundancy, and it
should use the knowledge about broadcast storms to
control retransmissions. Using the information con-
nector proposed in [2], the system could, e.g., react
to events signaling new neighbors. These can then be
informed by summarized information rather than by

a bunch of packets. How desirable such a protocol
might be, it cannot easily be separated into a network
layer and an application layer problem, and its design
thus requires integrated knowledge of both layers.

Since standardization efforts try to reach conver-
gence, there is a need for cooperation and finally con-
sensus between network layer (as in the Network-
on-Wheels project [1]) and VANET safety applica-
tion efforts (as in projects like WillWarn [5]). On
the way to alleviate these issues, we present SLOPE
(Self-Organizing Communication with Protocol Ele-
ments), a VANET communication platform that nar-
rows the gap between vehicular safety specialists pro-
viding a simple, yet powerful method to use so-
called protocol elements. As opposed to a layer-
encapsulated protocol like, e.g., TCP, these protocol
elements only become full protocols when comple-
mented by application-side PEs (provided by appli-
cation developers). Figure 1 shows the protocol ar-
chitecture presented in [2]. The yellow line denotes
the minimal communication system consisting only
of single-hop services and the information connector,
which uses a publisher/subscriber mechanism to dis-
tribute information between protocol entities. Note
that this paper focuses on safety applications only.
These would usually be built on top of the single-
hop layer. The orange and blue puzzle pieces de-
note the placement of SLOPE within this (protocol)
architecture. The provided PE (orange) is comple-
mented by its blue application-provided counter part.
Together, they form a VANET protocol that covers all
layers from single-hop to application layer, dealing
with single-hop, multi-hop, and transport issues. It is
important to note that the only way to build a working
protocol is if both protocol peers comply with each
other.

It remains to remark that SLOPE is not only a pro-
tocol architecture but also a prototype system that is
currently being built. The goal of this system is to
achieve a better cooperation between communication
and safety engineers. Besides offering PE interfaces,
the SLOPE systems tries to hide communication spe-
cific issues like, e.g., packet encoding, to speed up the
process of building a demonstrator system.

The rest of this paper is organized as follows:
While the above example is rather simple, the next
section will describe the principals of two important
protocol elements. Section III gives an overview of
the SLOPE prototype system and Section IV con-
cludes the paper glimpsing at our current and future
work.
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PROTOCOL ELEMENTS WITHIN A VANET PROTOCOL ARCHITECTURE

II. PROTOCOL ASPECTS

While this paper is mainly about system design, we
want to outline two examples to show where cooper-
ation between communication and application is re-
quired or beneficial. We will further point out some
general requirements that exist for the application PEs
as well as for the basic SLOPE system and its network
PEs.

A. Protocol Element Examples

Information flooding: The fundamental advan-
tage in including application knowledge to VANET
protocols is that it enables the network system to
‘understand’ the payload of the packet. With this
knowledge, the system is able to detect redundancy
in messages and since the medium is the bottle-neck
resource the most important goal is to avoid redun-
dancy. So, a typical task of the application PE is to
provide a method that tells the PE provided by the
SLOPE system if a given packet p contains informa-
tion that has already been sent or heard within a cer-
tain time window. Then, the system is able to safely
discard a message if the channel conditions require
it. Moreover, we can detect which neighbor has re-
broadcast certain information and use that for passive
acknowledgments.

Extending the example outlined in Section I, we
picture an application that is supposed to disseminate
information about local hazard conditions detected by
the car’s sensors. For the reasons described above, the
dissemination should (a) be multi-hop while avoiding
broadcast storms, (b) be quick, (c) avoid redundancy,
and (d) be aware of the network load. In addition, it
should cover more than the current network partition.
Thus, such an Information Flooding (IF) PE could be-
have as follows: if the application confirms that the
information in a received packet has not been sent for

some time, the packet can be rebroadcast. This elimi-
nates some information redundancy. The counterpart,
the PE on the network layer in return provides a jit-
tered resend which can be parameterized by network
density, load condition, or even by the geographic dis-
tance of the last sender and the current node as in
Contention-Based Forwarding (CBF) [6]. In addition,
the lower PE can select different forwarding modes to
transmit a data packet to every neighbor. E.g., it could
use anything from a simple single-hop broadcast up
to a separate unicast to each neighbor. The selection
of the method that is actually used can safely be left
to the communication system, relying on its knowl-
edge about which single-hop transmission method it
the best for the current conditions.

Periodic beaconing: The second application pro-
tocol element is intended for SOTIS-like applications
(Self-Organizing Traffic Information System) [7] that
periodically transmit information vectors. To accom-
plish this, the application PE registers a method re-
turning the current information to send. This method
is called by the network PE right before sending.

The advantage of this PE pair is the synergy that
arises when different protocols of this kind are run-
ning. E.g., the beacons used by the communication
system to asses the neighborhood situation are rela-
tively small messages, and another application could
fill the unused packet space with information. Since
channel access is often the critical part of the MAC
protocol, increasing the packet size is cheaper than
sending separate packets. Of course, the network sys-
tem can adapt the rate of the periodic messages to the
current network density and load [8].

B. General Requirements
Application state database: The application part

of the Protocol Element carries the complete appli-
cation logic to assess the safety-related situation by



evaluating sensor events gathered by the local infor-
mation connector and by external messages. In addi-
tion, it initiates the sending of information or packets.
To be able to decide if some received information is
new, an application has to keep track of the messages
received before and expire them if required. This
can be done by means of a state database that stores
knowledge about the situation in the surroundings or
traffic information about streets further away.

Computational complexity in the application:
An important issue within the SLOPE system is the
computational complexity of the methods that are
modeled by the protocol state machines. If an ap-
plication takes some seconds to check whether some
information was already received, or if it even blocks
while waiting for an event, it is unsuited for a safety
system. Thus, there will be an upper bound for the re-
action time of an application PE that the application
has to obey in order to not constrain the correspond-
ing network PE. Nevertheless, any delay slows down
the protocol and diminishes the performance.

Price per unit: Another important factor is the
price per communication unit. In order to quickly
achieve a high market penetration, the unit has to be
inexpensive. Vendors might want to build on-board
units with different resource configurations. E.g., one
unit might have less memory and CPU power than
others or might even not be connected to on-board
sensors. While this would, of course, have a nega-
tive impact on the features provided by the system,
the protocols could easily incorporate such “simpler
nodes” into the network. An application PE on such a
system could, e.g., only relay information packets on
the base of random jitters (that are not based on ge-
ographical positions) and—if it does not understand
the packets’ contents or is not able to keep track of
previously seen information—assume it has not seen
them yet. From a protocol perspective, such a sys-
tem would stress the channel resources more than a
full-featured one, and it will be subject of our further
research, how many of these “dumb nodes” can be
handled by the network.

Load saturation: There is a lot of discussion about
using as much of the channel as possible in order to
fully exploit the scarce resource. Much as tempting
that may sound, a fully loaded ad-hoc network has
many drawbacks, especially for protocols using un-
acknowledged link layer broadcasts. The reason for
this is the interference behavior of radio systems that
leads to the hidden terminal problem. Each packet
that is sent might destroy packets in the surroundings.

In a network with safety-critical messages, this means
that no unnecessary packets must be sent. There-
fore, the access granted to uncontrolled applications
in an open communication system has to be restricted.
In a closed communication system, however, only
the own applications have to be controlled. Under
this circumstances, it is feasible to build a commu-
nication system that is likely to work. Open net-
works, i.e., networks where arbitrary applications are
allowed to send messages would either have to re-
lentlessly drop these low-priority messages—which
could potentially break the applications—or to accept
a network load that may prevent emergencies from
being propagated fast enough. This would be wors-
ened further if multi-hop packet protocols [9] were al-
lowed. Summing up, for VANET safety channel com-
munication, we strongly advocate a non-open com-
munication system operating at a minimum channel
load.

III. ARCHITECTURAL OVERVIEW

In this section, we will explain the SLOPE pro-
totype system. It serves as a basis for the exam-
ple applications described above and aims to fulfill
the described requirements. As outlined previously,
the SLOPE prototype system is designed to simplify
the development and testing of VANET safety proto-
cols. However, there is a trade-off between ease of
use on one side and performance on the other. Dur-
ing application development the former is more im-
portant, while the final system will have to be more
performance-oriented and resource-saving. Mainly
out of these reasons, we have chosen Java as a plat-
form for all SLOPE components in our prototype sys-
tem. Link layer packets are sent using the Java Na-
tive Interface [10] in combination with Linux Packet
Sockets. The SLOPE components are depicted in Fig-
ure III. The yellow box contains the complete safety
communication on-board unit. In the final system, we
envision this to run on a single box, complemented
by on-board sensors and actors, depicted in the green
box. On one hand, this system enables the communi-
cation system to be, e.g., aware of the car’s position,
and on the other hand, all logic that reacts to events
generated by the communication system resides in
this green box. This allows car-vendors to easily in-
terface their proprietary technics with the system.

Besides the information connector and the ‘link
layer and below’ radio system, the SLOPE system
runs within a single Java Virtual Machine (VM), in-
cluding the provided parts of the Protocol Elements.
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SLOPE COMPONENTS

Implementing the application side of of a PE (the
blue puzzle pieces) is as easy as creating a sub type
of a provided Java class. This class encapsulates
communication with the network counterpart allow-
ing the application to be run either in the server VM
or, preferably, in a separate VM. In the second case,
the communication between corresponding protocol
elements is carried out by means of Java Remote
Method Invocation (RMI) [11]. Of course, RMI it-
self will create additional delay for each method call
and it will slow down the system considerably. This is
even worsened since SLOPE requires any calls to the
application VM to be non-blocking in order to avoid
that the application VM may pause the system. De-
spite the performance cost, we are convinced that the
ability to run in different VMs is important in the de-
velopment phase since it allows a separated develop-
ment, almost regardless of the operating system plat-
form. Moreover, even the SLOPE system’s VM can
run on a different system than the one carrying the ra-
dio system, allowing a centralized debugging. E.g., a
number of SLOPE VMs could be run on one develop-
ment computer while the wireless hardware could be
located in an experimental setup.

In conventional IP networks a communication sys-
tem offers services to deliver packets, i.e., chunks of
bytes, to a given destination. To use these, an appli-
cation opens a socket and sets some socket options
like destination IP address and port. Then the appli-
cation constructs its chunk of bytes and hands it to
the socket. On the destination node an application
opens a corresponding socket to receive the data. In
this case the only communication between network
layer and application is limited to setting and read-
ing socket options [12] and returning values from the
send() function call. In order to alleviate protocol de-
velopment the client side of the PEs is much more

comfortable. Building a packet is as easy as deriv-
ing from a provided packet class, and the SLOPE sys-
tem handles all the packet marshaling. Of course, this
comes at some performance cost. However, before
roll-out this protocol part can easily be optimized with
regard to packet size and marshaling/unmarshaling
performance.

Potentialities for performance improvement: As
noted above, performance was not the goal of the soft-
ware design in this development phase. However, we
have considered design alternatives for some aspects
that are potentially performance critical. E.g., since
the usage of RMI is fully encapsulated inside the PE
glue architecture (and independent of packet marshal-
ing), it could be replaced by a simple UNIX or IP
socket scheme if desired. This could happen with-
out changing the client code. In a later project phase,
even Java could become optional on system and ap-
plication side, and be replaced by a language generat-
ing OS native binaries like C++. However, this would
also require the application part to be rewritten.

Security considerations: Security is a very impor-
tant part of VANETs and also a lively part of VANET
research, and it should always be considered. The
SLOPE system, which is per se not an open com-
munication system, is potentially easier to be secured
than an open platform. Defining the yellow box as the
communication system, no trust relationships within
the box would have to be verified. Thus the whole
box could be accredited and only the information con-
nector would require secure access. In consequence,
security efforts could concentrate on the protocols.

Code integration vs. heavy weight socket inter-
face: Our approach is to integrate the execution of
application logic whenever the communication sys-
tem is required to understand a packet’s content. A
different approach would be to extend the network



header by some fields—such as, e.g., spatial or tem-
poral validity—that allow the network layer to per-
form some aggregation. Of course, this would come
at the cost of a heavier socket interface but would still
work in combination with the information connector.

However, we are convinced that SLOPE outper-
forms it (a) in terms of simplicity from the applica-
tion view and (b) in terms of flexibility in the devel-
opment process. Concerning (a): In heavy weight
socket protocols, the communication system has to
have some understanding of the packet semantics, at
least of some larger parts of the header. Our ap-
proach is to leave all these semantics to the applica-
tion, and to query them on-demand. This allows to
leave the packet definitions inside the application do-
main, which guarantees a very light weight and stan-
dardizable communication system. For (b): Abstract-
ing the application protocols into one or multiple pro-
tocols requires yet more knowledge about them, but
later on, the socket approach could be feasible. In ad-
dition, the final system will probably not be an open
communication system, at least for the safety part.
Thus, in contrast to conventional communication sys-
tems, where layering with designed-to-be-simple in-
terfaces guarantees extendibility, the protocol integra-
tion does not hurt at all.

As outlined in Section II-B, the capability require-
ments for the on-board unit depend on the complexity
of the contained communication system. Considering
the price per unit, a tiny resource configuration is de-
sirable. However, a significant gain in network perfor-
mance could be reached if the system incorporates the
application logic as outlined above. Moreover, the fi-
nal system could combine moderate resource require-
ments with channel efficient networking while neces-
sitating only a few dozen lines of application code.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented SLOPE, a commu-
nication system tailored to suit VANET safety com-
munication protocols. It acknowledges that these pro-
tocols have to be aware of effects on all layers. Fur-
thermore, we have presented example protocol ele-
ments and we have shown how networking know-how
can be beneficial for the application and vice versa. In
addition to the concept, we outlined the prototype im-
plementation that we are currently working on. With
this Java-based system, creating and testing VANET
protocols should be quick and easy.

Regarding our ongoing and future efforts, we
strongly hope that SLOPE is adopted by applica-
tion development groups to (a) prove the concept

and (b) work towards the goal of reasonable all-layer
VANET protocols by sharing the responsibility for the
medium. On the network side we are working on the
two PEs presented here and some more that might be
of interest for application developers. Still focusing
on communication, we will tailor VANET protocols
to information dissemination and look into the effects
of network load on overall performance. Further, the
system will have to be tested and evaluated in order
to assess the seriousness of the performance sacrifices
that were made for the sake of simplicity.

Following the proposed development path, we are
sure to be able to forge the desired system in a short
time frame. The final system—which will probably
not be based on Java—should be feasible with low
resource requirements and still be able to incorporate
most of the application logic.
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