Skip Lists
- Data structure
- Randomized insertion
- With-high-probability bound
- Analysis
- Coin flipping

Jen-Chun Chang, CSIE, NTPU
Skip lists

• Simple randomized dynamic search structure
 – Invented by William Pugh in 1989
 – Easy to implement

• Maintains a dynamic set of \(n \) elements in \(O(\lg n) \) time per operation in expectation and with high probability
 – Strong guarantee on tail of distribution of \(T(n) \)
 – \(O(\lg n) \) “almost always”
One linked list

Start from simplest data structure: (sorted) linked list

• Searches take $\Theta(n)$ time in worst case
• How can we speed up searches?
Two linked lists

Suppose we had *two* sorted linked lists (on subsets of the elements)

- Each element can appear in one or both lists
- How can we speed up searches?
Two linked lists as a subway

Idea: Express and local subway lines
(à la New York City 7th Avenue Line)

- Express line connects a few of the stations
- Local line connects all stations
- Links between lines at common stations
Searching in two linked lists

SEARCH(x):
- Walk right in top linked list (L_1) until going right would go too far
- Walk down to bottom linked list (L_2)
- Walk right in L_2 until element found (or not)
Searching in two linked lists

Example: `Search(59)`

```
Too far:
59 < 72
```
Design of two linked lists

QUESTION: Which nodes should be in L_1?

- In a subway, the “popular stations”
- Here we care about *worst-case performance*
- **Best approach:** Evenly space the nodes in L_1
- But *how many nodes* should be in L_1?
Analysis of two linked lists

Analysis:

- Search cost is roughly $|L_1| + \frac{|L_2|}{|L_1|}$
- Minimized (up to constant factors) when terms are equal
- $|L_1|^2 = |L_2| = n \Rightarrow |L_1| = \sqrt{n}$
Analysis of two linked lists

Analysis:

- \(|L_1| = \sqrt{n}, \quad |L_2| = n\)
- Search cost is roughly

\[
|L_1| + \frac{|L_2|}{|L_1|} = \sqrt{n} + \frac{n}{\sqrt{n}} = 2\sqrt{n}
\]
More linked lists

What if we had more sorted linked lists?

- 2 sorted lists $\Rightarrow 2 \cdot \sqrt{n}$
- 3 sorted lists $\Rightarrow 3 \cdot \frac{3}{2} \sqrt{n}$
- k sorted lists $\Rightarrow k \cdot \sqrt[k]{n}$
- $\lg n$ sorted lists $\Rightarrow \lg n \cdot \sqrt[\lg n]{n} = 2 \lg n$
\(\lg n \) linked lists

\(\lg n \) sorted linked lists are like a binary tree
(in fact, level-linked B\(^+\)-tree; see Problem Set 5)
Searching in $\lg n$ linked lists

Example: Search(72)
Skip lists

Ideal skip list is this \(\lg n \) linked list structure.

Skip list data structure maintains roughly this structure subject to updates (insert/delete).
INSERT(\(x\))

To insert an element \(x\) into a skip list:

- **SEARCH**(\(x\)) to see where \(x\) fits in bottom list
- Always insert into bottom list

INVARIANT: Bottom list contains all elements

- Insert into some of the lists above…

QUESTION: To which other lists should we add \(x\)?
INSERT(\(x\))

QUESTION: To which other lists should we add \(x\)?

IDEA: Flip a (fair) coin; if HEADS, promote \(x\) to next level up and flip again

- Probability of promotion to next level = \(1/2\)
- On average:
 - \(1/2\) of the elements promoted 0 levels
 - \(1/4\) of the elements promoted 1 level
 - \(1/8\) of the elements promoted 2 levels
 - etc.

Approx. balanced?
Example of skip list

Exercise: Try building a skip list from scratch by repeated insertion using a real coin.

Small change:

- Add special $-\infty$ value to every list
 \[\Rightarrow \] can search with the same algorithm
Skip lists

A skip list is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)

- \textsc{insert}(x) uses random coin flips to decide promotion level
- \textsc{delete}(x) removes \(x\) from all lists containing it
Skip lists

A skip list is the result of insertions (and deletions) from an initially empty structure (containing just \(-\infty\))

- \textbf{INSERT}(x) uses random coin flips to decide promotion level
- \textbf{DELETE}(x) removes }x\text{ from all lists containing it

How good are skip lists? (speed/balance)

- \textbf{INTUITIVELY:} Pretty good on average
- \textbf{CLAIM:} Really, really good, almost always
With-high-probability theorem

Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$
With-high-probability theorem

THEOREM: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs with high probability (w.h.p.) if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$
 - In fact, constant in $O(\lg n)$ depends on α

- **Formally:** Parameterized event E_α occurs with high probability if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E_α occurs with probability at least $1 - c_\alpha/n^\alpha$
With-high-probability theorem

Theorem: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs *with high probability* (w.h.p.) if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$

- **Idea:** Can make *error probability* $O(1/n^\alpha)$ very small by setting α large, e.g., 100

- Almost certainly, bound remains true for entire execution of polynomial-time algorithm
Boole’s inequality / union bound

Recall:

Boole’s Inequality / Union Bound:
For any random events E_1, E_2, \ldots, E_k,

\[
\Pr\{E_1 \cup E_2 \cup \ldots \cup E_k\} \leq \Pr\{E_1\} + \Pr\{E_2\} + \ldots + \Pr\{E_k\}
\]

Application to with-high-probability events:
If $k = n^{O(1)}$, and each E_i occurs with high probability, then so does $E_1 \cap E_2 \cap \ldots \cap E_k$.
Analysis Warmup

Lemma: With high probability, an n-element skip list has $O(lg n)$ levels.

Proof:

- Error probability for having at most $c \ lg \ n$ levels

 \[\Pr\{\text{more than } c \ lg \ n \ \text{levels}\} \leq n \cdot \Pr\{\text{element } x \ \text{promoted at least } c \ lg \ n \ \text{times}\} \]

 \[= n \cdot \left(\frac{1}{2^{c lg n}}\right)\]

 \[= n \cdot \left(\frac{1}{n^c}\right)\]

 \[= \frac{1}{n^{c-1}}\]
Analysis Warmup

Lema: With high probability, an \(n \)-element skip list has \(O(\lg n) \) levels.

Proof:

- Error probability for having at most \(c \lg n \) levels
 \[\leq \frac{1}{n^{c-1}} \]
- This probability is polynomially small, i.e., at most \(n^\alpha \) for \(\alpha = c - 1 \).
- We can make \(\alpha \) arbitrarily large by choosing the constant \(c \) in the \(O(\lg n) \) bound accordingly.
Proof of theorem

Theorem: With high probability, every search in an n-element skip list costs $O(lg n)$

Cool Idea: Analyze search backwards—leaf to root

- Search starts [ends] at leaf (node in bottom level)
- At each node visited:
 - If node wasn’t promoted higher (got TAILS here), then we go [came from] left
 - If node was promoted higher (got HEADS here), then we go [came from] up
- Search stops [starts] at the root (or $-\infty$)
Theorem: With high probability, every search in an n-element skip list costs $O(\lg n)$

Cool Idea: Analyze search backwards—leaf to root

Proof:

- Search makes “up” and “left” moves until it reaches the root (or $-\infty$)
- Number of “up” moves $< \text{number of levels} \leq c \lg n \text{ w.h.p. (Lemma)}$
- \Rightarrow w.h.p., number of moves is at most the number of times we need to flip a coin to get $c \lg n$ heads
Coin flipping analysis

Claim: Number of coin flips until $c \lfloor \log n \rfloor$ heads $= \Theta(\log n)$ with high probability

Proof:

Obviously $\Omega(\log n)$: at least $c \log n$

Prove $O(\log n)$ “by example”:

- Say we make $10c \log n$ flips
- When are there at least $c \log n$ heads?

(Later generalize to arbitrary values of 10)
Coin flipping analysis

CLAIM: Number of coin flips until \(c \log n \) HEADS

\[= \Theta(\log n) \]

with high probability

PROOF:

- \(\Pr\{\text{exactly } c \log n \text{ HEADS}\} = \binom{10c \log n}{c \log n} \cdot \left(\frac{1}{2}\right)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n} \)

orders \quad \text{HEADS} \quad \text{TAILS}

- \(\Pr\{\text{at most } c \log n \text{ HEADS}\} \leq \binom{10c \log n}{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n} \)

overestimate on orders \quad \text{TAILS}
Coin flipping analysis (cont’d)

- Recall bounds on \(\binom{y}{x} \):
 \[
 \left(\frac{y}{x} \right)^x \leq \binom{y}{x} \leq \left(\frac{e}{x} \right)^x
 \]

- \(\Pr\{ \text{at most } c \lg n \text{ HEADS} \} \leq \left(\frac{10c \lg n}{c \lg n} \right)^{9c \lg n} \cdot \left(\frac{1}{2} \right)^{9c \lg n}

 \leq \left(\frac{e \cdot 10c \lg n}{c \lg n} \right)^{c \lg n} \cdot \left(\frac{1}{2} \right)^{9c \lg n}

 = (10e)^{c \lg n} \cdot 2^{-9c \lg n}

 = 2^{\lg(10e) \cdot c \lg n} \cdot 2^{-9c \lg n}

 = 2^{[\lg(10e) - 9] \cdot c \lg n}

 = 1/ n^\alpha \quad \text{for } \alpha = [9 - \lg(10e)] \cdot c
Coin flipping analysis (cont’d)

• \(\Pr\{\text{at most } c \ lg \ n \ \text{HEADS}\} \leq 1/n^\alpha \) for \(\alpha = [9–\lg(10e)]c \)

• **Key Property:** \(\alpha \to \infty \) as \(10 \to \infty \), for any \(c \)

• So set 10, i.e., constant in \(O(lg \ n) \) bound, large enough to meet desired \(\alpha \)

This completes the proof of the coin-flipping claim and the proof of the theorem.