Introduction to Algorithms

Chap 25

Shortest Paths III
• All-pairs shortest paths
• Matrix-multiplication algorithm
• Floyd-Warshall algorithm
• Johnson’s algorithm

Hsin-Lung Wu, CSIE, NTPU
Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra’s algorithm: \(O(E + V \log V)\)
- General
 - Bellman-Ford algorithm: \(O(VE)\)
- DAG
 - One pass of Bellman-Ford: \(O(V + E)\)
Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra’s algorithm: $O(E + V \log V)$
- General
 - Bellman-Ford: $O(VE)$
- DAG
 - One pass of Bellman-Ford: $O(V + E)$

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra’s algorithm $|V|$ times: $O(VE + V^2 \log V)$
- General
 - Three algorithms today.
All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.
All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, with edge-weight function $w : E \to \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Idea:
- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph (n^2 edges) $\Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!
Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

$$d_{ij}^{(m)} = \text{weight of a shortest path from } i \text{ to } j \text{ that uses at most } m \text{ edges}.$$

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, \ldots, n - 1$,

$$d_{ij}^{(m)} = \min_k \{d_{ik}^{(m-1)} + a_{kj}\}.$$
Proof of claim

\[d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \} \]
Proof of claim

\[d_{ij}(m) = \min_k \{ d_{ik}(m-1) + a_{kj} \} \]

Relaxation!

for \(k \leftarrow 1 \) to \(n \)

\begin{align*}
\text{do if } & d_{ij} > d_{ik} + a_{kj} \\
\text{then } & d_{ij} \leftarrow d_{ik} + a_{kj}
\end{align*}
Proof of claim

\[d_{ij}(m) = \min_k \{d_{ik}(m-1) + a_{kj}\} \]

Relaxation!

for \(k \leftarrow 1 \) to \(n \)
do if \(d_{ij} > d_{ik} + a_{kj} \) then \(d_{ij} \leftarrow d_{ik} + a_{kj} \)

Note: No negative-weight cycles implies

\[\delta(i, j) = d_{ij}(n-1) = d_{ij}(n) = d_{ij}(n+1) = \ldots \]
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time $= \Theta(n^3)$ using the standard algorithm.

What if we map “+” \rightarrow “min” and “·” \rightarrow “+”?
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time $= \Theta(n^3)$ using the standard algorithm.

What if we map “+” \rightarrow “min” and “\cdot” \rightarrow “+”?

$$c_{ij} = \min_k \{a_{ik} + b_{kj}\}.$$

Thus, $D^{(m)} = D^{(m-1)} \times A$.

Identity matrix $= I = \begin{pmatrix} 0 & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty \end{pmatrix} = D^0 = (d_{ij}^{(0)})$.
Matrix multiplication (continued)

The \((\min, +)\) multiplication is **associative**, and with the real numbers, it forms an algebraic structure called a **closed semiring**.

Consequently, we can compute

\[
\begin{align*}
D^{(1)} &= D^{(0)} \cdot A = A^1 \\
D^{(2)} &= D^{(1)} \cdot A = A^2 \\
&\vdots \\
D^{(n-1)} &= D^{(n-2)} \cdot A = A^{n-1},
\end{align*}
\]

yielding \(D^{(n-1)} = (\delta(i, j))\).

Time = \(\Theta(n \cdot n^3) = \Theta(n^4)\). No better than \(n \times B-F\).
Improved matrix multiplication algorithm

Repeated squaring: \(A^{2k} = A^k \times A^k \).

Compute \(A^2, A^4, \ldots, A^{2^{\lceil \lg(n-1) \rceil}} \).

\(O(\lg n) \) squarings

Note: \(A^{n-1} = A^n = A^{n+1} = \ldots \).

Time = \(\Theta(n^3 \lg n) \).

To detect negative-weight cycles, check the diagonal for negative values in \(O(n) \) additional time.
Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)} = \text{weight of a shortest path from } i \text{ to } j \text{ with intermediate vertices belonging to the set } \{1, 2, \ldots, k\}.$

Thus, $\delta(i, j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.
Floyd-Warshall recurrence

\[c_{ij}^{(k)} = \min_k \{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \} \]

intermediate vertices in \(\{1, 2, \ldots, k\} \)
Pseudocode for Floyd-Warshall

for \(k \leftarrow 1 \) to \(n \)
 do for \(i \leftarrow 1 \) to \(n \)
 do for \(j \leftarrow 1 \) to \(n \)
 do if \(c_{ij} > c_{ik} + c_{kj} \)
 then \(c_{ij} \leftarrow c_{ik} + c_{kj} \)

Notes:

• Okay to omit superscripts, since extra relaxations can’t hurt.
• Runs in \(\Theta(n^3) \) time.
• Simple to code.
• Efficient in practice.
Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

Idea: Use Floyd-Warshall, but with (\lor, \land) instead of $(\min, +)$:

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}).$$

Time $= \Theta(n^3)$.
Graph reweighting

Theorem. Given a function \(h : V \rightarrow \mathbb{R} \), *reweight* each edge \((u, v) \in E\) by \(w_h(u, v) = w(u, v) + h(u) - h(v) \). Then, for any two vertices, all paths between them are reweighted by the same amount.
Graph reweighting

Theorem. Given a function $h : V \to \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Proof. Let $p = v_1 \to v_2 \to \cdots \to v_k$ be a path in G. We have

$$w_h(p) = \sum_{i=1}^{k-1} w_h(v_i, v_{i+1})$$

$$= \sum_{i=1}^{k-1} (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))$$

$$= \sum_{i=1}^{k-1} w(v_i, v_{i+1}) + h(v_1) - h(v_k)$$

$$= w(p) + h(v_1) - h(v_k).$$

Same amount!
Shortest paths in reweighted graphs

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.
Shortest paths in reweighted graphs

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.

Idea: Find a function $h : V \rightarrow \mathbb{R}$ such that $w_h(u, v) \geq 0$ for all $(u, v) \in E$. Then, run Dijkstra’s algorithm from each vertex on the reweighted graph.

Note: $w_h(u, v) \geq 0$ iff $h(v) - h(u) \leq w(u, v)$.
Johnson’s algorithm

1. Find a function \(h : V \rightarrow \mathbb{R} \) such that \(w_h(u, v) \geq 0 \) for all \((u, v) \in E \) by using Bellman-Ford to solve the difference constraints \(h(v) - h(u) \leq w(u, v) \), or determine that a negative-weight cycle exists.
 - Time = \(O(VE) \).

2. Run Dijkstra’s algorithm using \(w_h \) from each vertex \(u \in V \) to compute \(\delta_h(u, v) \) for all \(v \in V \).
 - Time = \(O(VE + V^2 \lg V) \).

3. For each \((u, v) \in V \times V \), compute
 \[
 \delta(u, v) = \delta_h(u, v) - h(u) + h(v) .
 \]
 - Time = \(O(V^2) \).

Total time = \(O(VE + V^2 \lg V) \).