Introduction to Algorithms

Chap 14

Augmenting Data Structures

• Dynamic order statistics
• Methodology
• Interval trees

Hsin-Lung Wu, CSIE, NTPU
Dynamic order statistics

OS-SELECT\((i, S)\): returns the \(i\)th smallest element in the dynamic set \(S\).

OS-RANK\((x, S)\): returns the rank of \(x \in S\) in the sorted order of \(S\)’s elements.

Idea: Use a red-black tree for the set \(S\), but keep subtree sizes in the nodes.

Notation for nodes: \(\text{key size}\)
Example of an OS-tree

\[
size[x] = size[left[x]] + size[right[x]] + 1
\]
Selection

Implementation trick: Use a sentinel (dummy record) for NIL such that $\text{size}[\text{NIL}] = 0$.

$\text{OS-SELECT}(x, i) \triangleright i$th smallest element in the subtree rooted at x

\[
k \leftarrow \text{size}[\text{left}[x]] + 1 \triangleright k = \text{rank}(x)
\]

if $i = k$ then return x

if $i < k$

then return $\text{OS-SELECT}(\text{left}[x], i)$

else return $\text{OS-SELECT}(\text{right}[x], i - k)$

(OS-RANK is in the textbook.)
Example

OS-SELECT(root, 5)

Running time = $O(h) = O(\lg n)$ for red-black trees.
Data structure maintenance

Q. Why not keep the ranks themselves in the nodes instead of subtree sizes?

A. They are hard to maintain when the red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when inserting or deleting.
Example of insertion

\textbf{INSERT(“K”)}
Handling rebalancing

Don’t forget that RB-INSERT and RB-DELETE may also need to modify the red-black tree in order to maintain balance.

- **Recolorings**: no effect on subtree sizes.
- **Rotations**: fix up subtree sizes in $O(1)$ time.

Example:

```
    C_11
    /   \
E_16   4
 /   /
C_7  3

  7
```

```
    C_16
    /   \
E_8  4
 /   /
C_7  3
```

∴ RB-INSERT and RB-DELETE still run in $O(lg n)$ time.
Data-structure augmentation

Methodology: *(e.g., order-statistics trees)*

1. Choose an underlying data structure (*red-black trees*).
2. Determine additional information to be stored in the data structure (*subtree sizes*).
3. Verify that this information can be maintained for modifying operations (*RB-INSERT*, *RB-DELETE* — *don’t forget rotations*).
4. Develop new dynamic-set operations that use the information (*OS-SELECT and OS-RANK*).

These steps are guidelines, not rigid rules.
Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

\[i = [7, 10] \]

low[\(i\)] = 7 \hspace{1cm} 10 = high[\(i\)]

Query: For a given query interval \(i\), find an interval in the set that overlaps \(i\).
Following the methodology

1. Choose an underlying data structure.
 • Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be stored in the data structure.
 • Store in each node x the largest value $m[x]$ in the subtree rooted at x, as well as the interval $int[x]$ corresponding to the key.
Example interval tree

\[m[x] = \max \left\{ \text{high}[\text{int}[x]], \text{m}[\text{left}[x]], \text{m}[\text{right}[x]] \right\} \]
Modifying operations

3. Verify that this information can be maintained for modifying operations.
 • INSERT: Fix m’s on the way down.
 • Rotations — Fixup = $O(1)$ time per rotation:

Total INSERT time = $O(\log n)$; DELETE similar.
New operations

4. Develop new dynamic-set operations that use the information.

INTERVAL-SEARCH(i)

```
x ← root
while x ≠ NIL and (low[i] > high[int[x]]
  or low[int[x]] > high[i])
do i and int[x] don’t overlap
  if left[x] ≠ NIL and low[i] ≤ m[left[x]]
    then x ← left[x]
  else x ← right[x]
return x
```
Example 1: \texttt{INTERVAL-SEARCH}([14,16])

\begin{itemize}
\item $x \leftarrow \text{root}$
\item $[14,16]$ and $[17,19]$ don’t overlap
\item $14 \leq 18 \Rightarrow x \leftarrow \text{left}[x]$
\end{itemize}
Example 1: $\text{INTERVAL-SEARCH}([14,16])$

[14,16] and [5,11] don’t overlap
14 > 8 $\Rightarrow x \leftarrow \text{right}[x]$
Example 1: \textsc{Interval-Search}([14,16])

[14,16] and [15,18] overlap

return [15,18]
Example 2: `INTERVAL-SEARCH([12,14])`

```
x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]
```
Example 2: \textsc{Interval-Search}([12,14])

[12,14] and [5,11] don’t overlap
12 > 8 \implies x \leftarrow \text{right}[x]
Example 2: $\text{INTERVAL-SEARCH}([12, 14])$

$[12, 14]$ and $[15, 18]$ don’t overlap

$12 > 10 \Rightarrow x \leftarrow \text{right}[x]$
Example 2: \textsc{interval-search}([12, 14])

\begin{itemize}
 \item $5, 11 / 18$
 \item $4, 8 / 8$
 \item $7, 10 / 10$
 \item $15, 18 / 18$
 \item $17, 19 / 23$
 \item $22, 23 / 23$
 \item $x = \text{NIL} \implies \text{no interval that overlaps [12, 14] exists}$
\end{itemize}
Analysis

Time = $O(h) = O(\lg n)$, since INTERVAL-SEARCH does constant work at each level as it follows a simple path down the tree.

List all overlapping intervals:
 • Search, list, delete, repeat.
 • Insert them all again at the end.

Time = $O(k \lg n)$, where k is the total number of overlapping intervals.

This is an output-sensitive bound.

Best algorithm to date: $O(k + \lg n)$.
Correctness

Theorem. Let \(L \) be the set of intervals in the left subtree of node \(x \), and let \(R \) be the set of intervals in \(x \)’s right subtree.

- If the search goes right, then
 \[
 \{ i' \in L : i' \text{ overlaps } i \} = \emptyset.
 \]
- If the search goes left, then
 \[
 \{ i' \in L : i' \text{ overlaps } i \} = \emptyset \implies \{ i' \in R : i' \text{ overlaps } i \} = \emptyset.
 \]

In other words, it’s always safe to take only 1 of the 2 children: we’ll either find something, or nothing was to be found.
Correctness proof

Proof. Suppose first that the search goes right.

- If $\text{left}[x] = \text{NIL}$, then we’re done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have $\text{low}[i] > m[\text{left}[x]]$. The value $m[\text{left}[x]]$ corresponds to the high endpoint of some interval $j \in L$, and no other interval in L can have a larger high endpoint than $\text{high}[j]$.

\[high[j] = m[\text{left}[x]] \]

- Therefore, $\{i' \in L : i' \text{ overlaps } i \} = \emptyset$.
Proof (continued)

Suppose that the search goes left, and assume that

\[\{ i' \in L : i' \text{ overlaps } i \} = \emptyset. \]

• Then, the code dictates that \(\text{low}[i] \leq m[\text{left}[x]] = \text{high}[j] \) for some \(j \in L \).

• Since \(j \in L \), it does not overlap \(i \), and hence \(\text{high}[i] < \text{low}[j] \).

• But, the binary-search-tree property implies that for all \(i' \in R \), we have \(\text{low}[j] \leq \text{low}[i'] \).

• But then \(\{ i' \in R : i' \text{ overlaps } i \} = \emptyset. \)