Introduction to Algorithms

Chap 13

Balanced Search Trees

• Red-black trees
• Height of a red-black tree
• Rotations
• Insertion

Hsin-Lung Wu, CSIE, NTPU
Balanced search trees

Balanced search tree: A search-tree data structure for which a height of \(O(lg \ n) \) is guaranteed when implementing a dynamic set of \(n \) items.

Examples:

- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees
Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes $= \text{black-height}(x)$.
Example of a red-black tree

\[h = 4 \]
Example of a red-black tree

1. Every node is either red or black.
Example of a red-black tree

2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
Example of a red-black tree

4. All simple paths from any node x to a descendant leaf have the same number of black nodes $= \text{black-height}(x)$.
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height
\[h \leq 2 \log(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \lg(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$h \leq 2 \lg(n + 1).$$

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \log_2(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height

\[h \leq 2 \log(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:

- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h' \) of leaves.
Proof (continued)

• We have $h' \geq h/2$, since at most half the leaves on any path are red.

• The number of leaves in each tree is $n + 1$
 \[\Rightarrow n + 1 \geq 2^{h'} \]
 \[\Rightarrow \lg(n + 1) \geq h' \geq h/2 \]
 \[\Rightarrow h \leq 2 \lg(n + 1). \]
Query operations

Corollary. The queries **SEARCH**, **MIN**, **MAX**, **SUCCESSOR**, and **PREDECESSOR** all run in $O(\lg n)$ time on a red-black tree with n nodes.
Modifying operations

The operations **INSERT** and **DELETE** cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via "rotations".
Rotations maintain the inorder ordering of keys:

- $a \in \alpha$, $b \in \beta$, $c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c$.

A rotation can be performed in $O(1)$ time.
Insertion into a red-black tree

IDEA: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

```
    7
   / \
  3   18
   /     /
  10  11  22
   /     /     /
  8   11   26
```
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
Insertion into a red-black tree

Idea: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7)** and recolor.
Insertion into a red-black tree

Idea: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7) and recolor.**
Pseudocode

RB-INSERT\((T, x)\)

TREE-INSERT\((T, x)\)

\(color[x] \leftarrow \text{RED} \quad \triangleright \text{only RB property 3 can be violated}\)

\(\text{while } x \neq \text{root}[T] \text{ and } color[p[x]] = \text{RED}\)

\(\text{do if } p[x] = \text{left}[p[p[x]]]
\quad \text{then } y \leftarrow \text{right}[p[p[x]]] \quad \triangleright y = \text{aunt/uncle of } x\)

\(\text{if } color[y] = \text{RED}\)

\(\text{then } \langle \text{Case 1} \rangle\)

\(\text{else if } x = \text{right}[p[x]]\)

\(\text{then } \langle \text{Case 2} \rangle \quad \triangleright \text{Case 2 falls into Case 3}\)

\(\langle \text{Case 3} \rangle\)

\(\text{else } \langle \text{“then” clause with “left” and “right” swapped} \rangle\)

\(color[root[T]] \leftarrow \text{BLACK}\)
Graphical notation

Let \(\triangle \) denote a subtree with a black root.

All \(\triangle \)'s have the same black-height.
Case 1

(Or, children of A are swapped.)

Recolor

Push C’s black onto A and D, and recurse, since C’s parent may be red.
Case 2

LEFT-ROTATE(A)

Transform to Case 3.
Case 3

RIGHT-ROTATE(C)

Done! No more violations of RB property 3 are possible.
Analysis

- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\log n)$ with $O(1)$ rotations.

RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).