Introduction to Algorithms

Chap 04-1

Asymptotic Notation
• \(O \)-, \(\Omega \)-, and \(\Theta \)-notation

Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method

Hsin-Lung Wu, CSIE, NTPU
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.
Asymptotic notation

\textbf{O-notation (upper bounds)}:

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

\textbf{Example}: $2n^2 = O(n^3)$ \hspace{1cm} ($c = 1$, $n_0 = 2$)
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$ \hspace{1cm} (c = 1, n_0 = 2)

functions, not values
Asymptotic notation

\(O\)-notation (upper bounds):

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, \ n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Example: \(2n^2 = O(n^3) \) \((c = 1, \ n_0 = 2) \)

functions, not values

funny, "one-way" equality
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)

(Logicians: \(\lambda n.2n^2 \in O(\lambda n.n^3) \), but it’s convenient to be sloppy, as long as we understand what’s really going on.)
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: \(f(n) = n^3 + O(n^2) \)

means

\(f(n) = n^3 + h(n) \)

for some \(h(n) \in O(n^2) \).
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: \(n^2 + O(n) = O(n^2) \) means for any \(f(n) \in O(n) \):
\[
n^2 + f(n) = h(n)
\]
for some \(h(n) \in O(n^2) \).
Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O(n^2)$.
Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]
Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } \ c > 0, \ n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]

Example: \(\sqrt{n} = \Omega(lg\ n) \) \((c = 1, \ n_0 = 16)\)
Θ-notation (tight bounds)

\[\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \]
Θ-notation (tight bounds)

\[Θ(g(n)) = O(g(n)) \cap Ω(g(n)) \]

Example: \[\frac{1}{2} n^2 - 2n = Θ(n^2) \]
\(o \)-notation and \(\omega \)-notation are like \(\leq \) and \(\geq \).

\(o \)-notation and \(\omega \)-notation are like \(< \) and \(> \).

\[
o(g(n)) = \{ f(n) : \text{for any constant } c > 0, \\
\text{there is a constant } n_0 > 0 \\
\text{such that } 0 \leq f(n) < cg(n) \\
\text{for all } n \geq n_0 \}
\]

Example: \(2n^2 = o(n^3) \) \((n_0 = 2/c) \)
Ω-notation and ω-notation are like ≤ and ≥.

o-notation and ω-notation are like < and >.

\[\omega(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{there is a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \]

EXAMPLE: \[\sqrt{n} = \omega(\lg n) \quad (n_0 = 1 + 1/c) \]
Solving recurrences

• The analysis of merge sort from Lecture 1 required us to solve a recurrence.

• Recurrences are like solving integrals, differential equations, etc.
 ◦ Learn a few tricks.

• Lecture 3: Applications of recurrences to divide-and-conquer algorithms.
Substitution method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.
Substitution method

The most general method:
1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.

Example: \(T(n) = 4T(n/2) + n \)
- [Assume that \(T(1) = \Theta(1) \).]
- Guess \(O(n^3) \). (Prove \(O \) and \(\Omega \) separately.)
- Assume that \(T(k) \leq ck^3 \) for \(k < n \).
- Prove \(T(n) \leq cn^3 \) by induction.
Example of substitution

\[T(n) = 4T(n/2) + n \]
\[\leq 4c(n/2)^3 + n \]
\[= (c/2)n^3 + n \]
\[= cn^3 - ((c/2)n^3 - n) \leftarrow \text{desired} - \text{residual} \]
\[\leq cn^3 \leftarrow \text{desired} \]

whenever \((c/2)n^3 - n \geq 0 \), for example, if \(c \geq 2 \) and \(n \geq 1 \).
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.

 - **Base:** \(T(n) = \Theta(1) \) for all \(n < n_0 \), where \(n_0 \) is a suitable constant.

 - For \(1 \leq n < n_0 \), we have “\(\Theta(1) \)” \(\leq cn^3 \), if we pick \(c \) big enough.
Example (continued)

• We must also handle the initial conditions, that is, ground the induction with base cases.

• **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.

• For $1 \leq n < n_0$, we have “$\Theta(1)$” $\leq cn^3$, if we pick c big enough.

This bound is not tight!
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$$
T(n) = 4T(n/2) + n \
\leq 4c(n/2)^2 + n \
= cn^2 + n \
= O(n^2)
$$
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$T(n) = 4T(n/2) + n$

$\leq 4c(n/2)^2 + n$

$= cn^2 + n$

$= O(n^2)$ \textbf{Wrong!} We must prove the I.H.
A tighter upper bound?

We shall prove that \(T(n) = O(n^2) \).

Assume that \(T(k) \leq ck^2 \) for \(k < n \):

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= O(n^2) \quad \text{Wrong!} \quad \text{We must prove the I.H.} \\
= cn^2 - (-n) \quad [\text{desired} - \text{residual}] \\
\leq cn^2 \quad \text{for no choice of } c > 0. \quad \text{Lose!}
\]
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.
A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

- **Subtract** a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.

\[
T(n) = 4T(n/2) + n
= 4(c_1(n/2)^2 - c_2(n/2)) + n
= c_1 n^2 - 2c_2 n + n
= c_1 n^2 - c_2 n - (c_2 n - n)
\leq c_1 n^2 - c_2 n \text{ if } c_2 \geq 1.
\]
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- Subtract a low-order term.

Inductive hypothesis: \(T(k) \leq c_1 k^2 - c_2 k \) for \(k < n \).

\[
T(n) = 4T(n/2) + n \\
= 4(c_1 (n/2)^2 - c_2 (n/2)) + n \\
= c_1 n^2 - 2c_2 n + n \\
= c_1 n^2 - c_2 n - (c_2 n - n) \\
\leq c_1 n^2 - c_2 n \quad \text{if } c_2 \geq 1.
\]

Pick \(c_1 \) big enough to handle the initial conditions.
Recursion-tree method

• A recursion tree models the costs (time) of a recursive execution of an algorithm.
• The recursion-tree method can be unreliable, just like any method that uses ellipses (…).
• The recursion-tree method promotes intuition, however.
• The recursion tree method is good for generating guesses for the substitution method.
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$.
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$T(n)$
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):

\[
\begin{align*}
\text{n}^2 & \quad \text{n}^2 \\
(n/4)^2 & \quad (n/2)^2 \\
T(n/16) & \quad T(n/8) \quad T(n/8) \quad T(n/4)
\end{align*}
\]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

```
                         n^2
                        /   |
                       /     |
                      /       |
                     /         |
                    /           |
                   /             |
                  /               |
                 /                 |
                /                   |
               /                     |
              /                       |
             /                         |
            /                           |
           /                             |
          /                               |
```

$\Theta(1)$
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$
\begin{array}{c}
\frac{n^2}{2} \\
\frac{n^2}{4} \\
\frac{n^2}{8} \\
\vdots \\
\Theta(1)
\end{array}
$$
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[
\begin{array}{c}
\Theta(1) \\
\vdots \\
\vdots \\
\vdots \\
\end{array}
\]

\[
\frac{5}{16}n^2
\]

\[
\frac{1}{2}n^2
\]

\[
\frac{1}{4}n^2
\]

\[
\frac{1}{16}n^2
\]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$
\begin{align*}
\Theta(1) & \quad \cdots \quad \frac{25}{256} n^2 \\
\vdots & \quad \cdots \quad \frac{5}{16} n^2 \\
(n/4)^2 & \quad (n/2)^2 \\
(n/8)^2 & \quad (n/8)^2 \\
(n/4)^2 & \quad n^2 \\
(n/2)^2 & \quad n^2 \\
(n/4)^2 & \quad n^2 \\
(n/8)^2 & \quad n^2 \\
(n/16)^2 & \quad n^2 \\
(n/4)^2 & \quad n^2
\end{align*}
$$
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[
\begin{array}{c}
\vdots \\
\Theta(1) \\
(n/16)^2 \quad (n/8)^2 \\
(n/4)^2 \quad (n/2)^2 \\
n^2 \quad n^2
\end{array}
\]

Total \[= n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \left(\frac{5}{16}\right)^3 + \cdots\right)\]
\[= \Theta(n^2) \text{ geometric series}\]
The master method applies to recurrences of the form

\[T(n) = a \frac{T(n)}{b} + f(n) , \]

where \(a \geq 1, \ b > 1, \) and \(f \) is asymptotically positive.
Three common cases

Compare $f(n)$ with $n^{\log ba}$:

1. $f(n) = O(n^{\log ba - \varepsilon})$ for some constant $\varepsilon > 0$.

 - $f(n)$ grows polynomially slower than $n^{\log ba}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log ba})$.
Three common cases

Compare $f(n)$ with $n^{\log ba}$:

1. $f(n) = O(n^{\log ba - \varepsilon})$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log ba}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log ba})$.

2. $f(n) = \Theta(n^{\log ba \lg^k n})$ for some constant $k \geq 0$.
 - $f(n)$ and $n^{\log ba}$ grow at similar rates.

 Solution: $T(n) = \Theta(n^{\log ba \ lg^{k+1} n})$.
Three common cases (cont.)

Compare $f(n)$ with $n^{\log_{ba}}$:

3. $f(n) = \Omega(n^{\log_{ba} + \varepsilon})$ for some constant $\varepsilon > 0$.

 - $f(n)$ grows polynomially faster than $n^{\log_{ba}}$ (by an n^ε factor),

 and $f(n)$ satisfies the regularity condition that $a f(n/b) \leq c f(n)$ for some constant $c < 1$.

Solution: $T(n) = \Theta(f(n))$.
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n. \]

Case 1: \(f(n) = O(n^{2-\varepsilon}) \) for \(\varepsilon = 1. \)
\[\therefore \ T(n) = \Theta(n^2). \]
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[a = 4, \ b = 2 \implies n^{\log_b a} = n^2; \ f(n) = n. \]
Case 1: \(f(n) = O(n^{2 - \epsilon}) \) for \(\epsilon = 1. \)
\[\therefore \ T(n) = \Theta(n^2). \]

Ex. \(T(n) = 4T(n/2) + n^2 \)
\[a = 4, \ b = 2 \implies n^{\log_b a} = n^2; \ f(n) = n^2. \]
Case 2: \(f(n) = \Theta(n^2 \lg^0 n), \) that is, \(k = 0. \)
\[\therefore \ T(n) = \Theta(n^2 \lg n). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[
\begin{align*}
\text{ } a &= 4, \quad b = 2 \quad \Rightarrow \quad n^{\log_b a} = n^2; \\
\text{CASE 3: } f(n) &= \Omega(n^2 + \varepsilon) \quad \text{for } \varepsilon = 1 \\
\text{and } 4(n/2)^3 &\leq cn^3 \quad \text{(reg. cond.) for } c = 1/2.
\end{align*}
\]
\[\therefore \quad T(n) = \Theta(n^3).\]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[
a = 4, \ b = 2 \implies n^{\log_b a} = n^2; \ f(n) = n^3.
\]
Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2 \).
\[\therefore T(n) = \Theta(n^3). \]

Ex. \(T(n) = 4T(n/2) + n^2/\log n \)
\[
a = 4, \ b = 2 \implies n^{\log_b a} = n^2; \ f(n) = n^2/\log n.
\]
Master method does not apply. In particular, for every constant \(\varepsilon > 0 \), we have \(n^\varepsilon = \omega(\log n) \).
Idea of master theorem

Recursion tree:

\[f(n) \]
\[\frac{f(n)}{b} \quad \frac{f(n)}{b} \quad \cdots \quad \frac{f(n)}{b} \]
\[\frac{f(n/b^2)}{b} \quad \frac{f(n/b^2)}{b} \quad \cdots \quad \frac{f(n/b^2)}{b} \]
\[\vdots \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[\begin{align*}
\text{f}(n) & \quad \text{a} \quad \text{f}(n) \\
\text{f}(n/b) & \quad \text{f}(n/b) \quad \cdots \quad \text{f}(n/b) & \quad \text{a} \quad \text{f}(n/b) \\
\text{f}(n/b^2) & \quad \text{f}(n/b^2) \quad \cdots \quad \text{f}(n/b^2) & \quad \text{a}^2 \text{f}(n/b^2) \\
\vdots & \quad \vdots & \quad \vdots \\
T(1) & \quad \vdots \\
\end{align*} \]
Idea of master theorem

Recursion tree:

\[f(n) \]

\[f(n/b) \]

\[f(n/b^2) \]

\[\vdots \]

\[T(1) \]

\[a \]

\[af(n/b) \]

\[a^2 f(n/b^2) \]

\[\vdots \]

\[h = \log_b n \]
Idea of master theorem

Recursion tree:

- $f(n)$
- $f(n/b)$
- $f(n/b^2)$
- ...
- $f(n/b^h)$

$h = \log_b n$

- $af(n/b)$
- $a^2f(n/b^2)$
- ...
- $a^h f(n/b^h)$

#leaves = a^h

- $T(1)$
- $= a^{\log_b n}$
- $= n^{\log_b a}$

$n^{\log_b a} T(1)$
Idea of master theorem

Recursion tree:

\[f(n) \]
\[a \]
\[f(n/b) \]
\[a \]
\[f(n/b^2) \]
\[a \]
\[\vdots \]
\[T(1) \]
\[\Theta(n^{\log_b a}) \]

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.
Idea of master theorem

Recursion tree:

\[f(n) \overset{a}{\longrightarrow} f(n) \]
\[f(n/b) \overset{a}{\longrightarrow} af(n/b) \]
\[f(n/b^2) \overset{a^2}{\longrightarrow} a^2 f(n/b^2) \]

\[h = \log_b n \]

CASE 2: \(k = 0 \) The weight is approximately the same on each of the \(\log_b n \) levels.

\[\Theta(n^{\log_b a} \lg n) \]
Idea of master theorem

Recursion tree:

\[f(n), \ldots, f(n) \]

\[f(n/b), f(n/b), \ldots, f(n/b), a f(n/b) \]

\[f(n/b^2), f(n/b^2), \ldots, f(n/b^2), a^2 f(n/b^2) \]

\[\vdots \]

\[T(1) \]

\[n^{\log_b a} T(1) \]

\[\Theta(f(n)) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.
Appendix: geometric series

\[1 + x + x^2 + \cdots + x^n = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1 \]

\[1 + x + x^2 + \cdots = \frac{1}{1 - x} \quad \text{for } |x| < 1 \]

Return to last slide viewed.