Chapter 11. SOM: Spiral-Fat-Tree-Based On-Demand Multicast Protocol in a Wireless Ad-Hoc Network

Prof. Yuh-Shyan Chen
Department of Computer Science and Information Engineering
National Taipei University
Dec. 2007
Best Paper Award in IEEE ICOIN-15

The 15th IEEE International Conference on Information Networking (ICOIN-15)
B-Con Plaza, Beppu City, Japan
31 January – 2 February 2001

Presents this
BEST PAPER AWARD
to
Yuh-Shyan Chen, Tzung-Shi Chen,
and Ching-Jang Hung

for the paper entitled
SOM: Spiral-Fat-Tree-Based on-Demand Multicast Protocol in a Wireless Ad-Hoc Network

Given this 2nd day of February 2001.

Yoshitaka Shibata
General Chair

Cheeha Kim
Awards Committee Chair

Bernard O. Aduahan
Program Chair
Included in Book ‘Ad Hoc and Sensor Networks’
Outline

I. Introduction
II. Basic Idea
III. Our Proposed Protocol
IV. Performance Evaluation
V. Conclusion
I. Introduction

- Propose a new **multicast protocol** in the **Mobile Ad-hoc NETwork (MANET)**

- Develop a **simulation platform** to evaluate the performance of our protocol
Mobile Ad-Hoc Network

- **Mobile Ad-hoc NETwork (MANET)**
 - Formed by wireless hosts which may be **mobile**
 - Without (necessarily) using a **pre-existing infrastructure**
 - Routes between nodes may potentially contain **multiple hops**

- **Design Difficulty:**
 - **Node mobility**
 - Topology is changeable
Existing Multicast Protocols

- **Tree-based** multicast protocols
 - There is only path from source to destination

- **Mesh-based** multicast protocols
 - Source to destination has two or more paths
Classification of Multicast

- **Proactive Multicasting Protocol**
 - Pre-Build a Shared Multicast-Tree

- **Reactive Multicast Protocol**
 - On-Demand to Construct a Multicast-Tree
A Comparison Table

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Proactive/Reactive</th>
<th>Multi-Path</th>
<th>Location-Aware</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT</td>
<td>Proactive</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>AODV</td>
<td>Reactive</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>DVMRP</td>
<td>Reactive</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Tree-based multicast protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMP</td>
<td>Proactive</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>FGMP</td>
<td>Reactive</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>ODMRP</td>
<td>Reactive</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ours(SOM)</td>
<td>Reactive</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Mesh-based multicast protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tree-Based Approach

- **CBT** [ACM SIGCOMM 93]
 - Core Base Tree protocol
 - Proactive

- **AODV** [Mobicom 99]
 - Ad hoc On Demand Distance Vector protocol
 - Reactive (or called as On-Demand)

- **DVMRP** [ACM Transactions on Computer Systems]
 - Distance Vector Multicast Routing Protocol
 - Reactive
Mesh-Based Approach

- **FGMP** [Cluster Computer 1998]
 - Forwarding Group Multicast Protocol
 - Reactive

- **ODMRP** [IEEE 8-th ICCCN ‘99]
 - On-Demand Multicast Routing Protocol
 - Reactive

- All on-demand protocols are implemented and compared in our simulator.
Drawback of Existing Protocols

- Existing on-demand protocol wastes heavy **Blind-Flood** packets

- **Reconfigure** multicast-tree frequently
 - Due to the problem of **node mobility**
The robustness of multicast-tree of existing reactive protocols is weak

The motivation of this paper is to enhance the robustness of multicast-tree
Contribution

This paper presents a special multi-path approach
 ● to enhance the robustness of multicast-tree

Propose the Spiral-Fat-Tree-based scheme
 ● Advantage: reduce the probability of re-configuration of multicast-tree
II. Base idea

The basic idea of Spiral-Fat-Tree-Based Scheme is

- Spiral-Path
- Spiral-Tree
- Spiral-Fat-Tree
A special robust-path (spiral-path) is adopted.

- This idea originated by our previous paper, which has been presented in *IEEE ICCCN 2000*, Las Vegas, U.S.A.
- To appear in *IEICE Trans. on Communications*.

Using the spiral-path to possibly construct a robust fat-tree structure.
A path

Source Primary Path Destination
Spiral-Path

Primary Path

Backup Path

Backup Path
A Tree Structure

(a)

(b)

Root
A Fat-Tree Structure
Spiral-Tree

(a)

(b)
Spiral-Fat-Tree

Root
III. Our SOM (Multicast) Protocol

- Step 1: Identify the Branch-Node
- Step 2: Construct the Spiral-Fat-Tree
- Step 3: Maintain the Spiral-Fat-Tree
Step 1: Identify the Branch-Node

- Each node periodically sends *Beacon message* within 2-hops.

- A node is said as a branch-node if there exists at least two distinct paths from a same node.
Branch-Node

Beacon message

\[\text{Click}_{1,2} = 4 \]

\[\text{TwoHopPath}_{1,2} = 3, 5, 4, 6 \]

\[\text{BranchNode} = \text{True} \]
Step 2: Construct the Spiral-Fat-Tree

- **Multi-Path Searching** Phase
- **Multi-Path Merging** Phase
Multiple-Path Searching Phase

[Diagram showing a network with nodes labeled 1 to 18, and arrows indicating communication paths. Nodes are connected by paths labeled with counters and RREQ or MREQ messages.]
Merging Criterion

(a) Source node

(b) Source node

(c) Source node
A Possible Spiral-Fat-Tree
Step 3: Multicast-Tree Maintenance

- A node is said as a **failed node** if the node is moving out the original transmission radius
Case 1: The failed node is not a merged node
Case 2: The failed node is the merging node
IV. Performance Evaluation

Simulation environment

- Can choose 50, 75, 100 nodes in 500*500 meters
- Transmitter range can be 50, 100, 150 meters
- 1 source v.s. 4~12 destination nodes
- Speed 10~100 km/hr
- Five protocols are implemented and compared.
 - AODV, DVMPR, FGMP, ODMRP, and SOM.
Performance Metrics

- **RE (REachability)**
 - The number of all destination nodes receiving the data message divided by the total number of all destination hosts that are reachable, directly or indirectly, from the source host.

- **RB (ReBroadcast)**
 - The number of REQUEST packets for all mobile hosts in MANET.

- **AL (Average Latency)**
 - The interval from the time the multicast was initiated to the time the last host finishing its multicasting.
Performance of REEachability (RE)

- An efficient multicast protocol is achieved by with high REEachability (RE)
Performance of REAchability v.s. effect of Number of Mobile Hosts
Performance of REAchability vs. effect of Transmission Radius
Performance of **ReBroadcast**

- An efficient multicast protocol is achieved by with **low ReBroadcast (RB)**
Performance of ReBroadcast vs. effect of Number of Mobile Hosts
Performance of **ReBroadcast** vs. **effect of Transmission Radius**
Performance of Average Latency

- An efficient multicast protocol is achieved by with low Average Latency (AL)
Performance of **Average Latency** vs. Effect of Mobility
Performance of **Average Latency** vs. Effect of Number of Message Length
Performance of **Average Latency** vs. Effect of Number of Destination Nodes
Performance of **Average Latency** vs. Effect of Mobility with Number of Destination Nodes
V. Conclusion

- This paper proposes a novel multicast routing (SOM) Protocol
 - Spiral-path-based scheme
- Our proposed protocol is truly efficient evaluated by our developed simulation platform

Current Work
- Develop a QoS Routing Protocol using Spial-Path-Based Scheme
Homework #11:

1. What’s multicast routing protocol in MANETs?