Numerical Analysis of the Power Saving in 3GPP LTE Advanced Wireless Networks

Sunggeun Jin, Member, IEEE
Daji Qiao, Member, IEEE
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
VOL. 61, NO. 4, MAY 2012
Outline

- Introduction
- Discontinuous Reception Operation in 3GPP LTE-A Wireless Networks
- Analytical Model
 - Power-Saving Factor
 - Transmission Delay
- Results
- Conclusion
Introduction

- Third-Generation Partnership Project (3GPP) Long-Term Evolution Advanced (LTE-A) wireless networks provide power-saving operations since lifetime extension of battery-powered mobile devices is one of the most important features for user convenience.

- LTE-A wireless networks support the power-saving operation called **Discontinuous Reception (DRX)** operation. In this operation, the user equipment (UE) periodically wakes up to monitor new packet arrivals by receiving an indication message conveyed via a control channel.
The performance of the power-saving operation can be evaluated with two metrics: the power saving factor and the average packet transmission delay.

In viewpoint of power consumption, we can characterize the DRX operation by two operational states: active and sleeping states.

M/G/1 queuing system is modeled to describe the packet transmission delay.
Fig. 1. Exemplary snapshot of the DRX operation in 3GPP LTE Advanced wireless networks.
Analytical Model

t_I: Time between the start of an inactivity timer and the time that new packet arrives.
t_B: Activity period
C_T: Inactivity Timer
X: Transmission time for a single packet

Fig. 2. Example for active state operation.
Analytical Model (Cont.)

- Power-Saving Factor:
 - \(\frac{E[T_D]}{(E[T_A]+E[T_D])} \)
 - \(T_D \): Overall time that the UE spends in sleeping state.
 - \(T_A \): Overall time that the UE spends in active state.
Analytical Model (Cont.)

- Power-Saving Factor:

\[
\frac{E[T_D]}{E[T_D] + E[T_A]}
= \frac{E[T_D](1 - \rho)}{E[T_D] + \frac{1}{\lambda}(e^{\lambda C_T} - 1)}
= (1 - \rho) \times \left(\frac{1 - (e^{-\lambda C_S})^N}{1 - e^{-\lambda C_S}} C_S + \frac{(e^{-\lambda C_S})^N}{1 - e^{-\lambda C_L}} C_L \right)
\left/ \left(\frac{1 - (e^{-\lambda C_S})^N}{1 - e^{-\lambda C_S}} C_S + \frac{(e^{-\lambda C_S})^N}{1 - e^{-\lambda C_L}} C_L + \frac{1}{\lambda}(e^{\lambda C_T} - 1) \right) \right.
\]
Analytical Model (Cont.)

- Transmission Delay:
 - Derive the average transmission delay for M/G/1 queuing system.
 - Using the Pollaczek-Khinchine formula.
 - \(E[D_I] = \frac{\lambda E[X^2]}{2(1-\rho)} \)
Analytical Model (Cont.)

- Transmission Delay:

\[
P_S = \frac{\lambda E[t_S]}{\lambda (E[T_A] + E[T_D])}
\]

\[
P_L = \frac{\lambda E[t_L]}{\lambda (E[T_A] + E[T_D])}.
\]

\[
E[D]=(1 - P_S - P_L)E[D_I]
+ P_S \left(E[D_I] + \frac{C_S}{2(1-\rho)} \right)
+ P_L \left(E[D_I] + \frac{C_L}{2(1-\rho)} \right)
\]

\[
= \frac{\lambda E[X^2]}{2(1-\rho)}
+ \frac{1}{2} \left(\frac{1-(e^{-\lambda C_S})^N}{1-e^{-\lambda C_S}} (C_S)^2 + \frac{(e^{-\lambda C_S})^N}{1-e^{-\lambda C_L}} (C_L)^2 \right)
\]

\[
\left(\frac{1-(e^{-\lambda C_S})^N}{1-e^{-\lambda C_S}} C_S + \frac{(e^{-\lambda C_S})^N}{1-e^{-\lambda C_L}} C_L + \frac{1}{\lambda} (e^{\lambda C_T} - 1) \right).
\]

(16)
Results

Fig. 3. Power-saving factor and average packet transmission delay when $N = 2$, $\tau = 0.1$, $\lambda = 0.1$, and $C_L = 2C_S$. (a) Power-saving factor. (b) Average packet transmission delay.
Results (Cont.)

Fig. 4. Power-saving factor and average packet transmission delay when $\tau = 0.1$ ms, $\lambda = 0.1$/ms, $C_S = 8$ ms, and $C_T = 8$ ms.
(a) Power-saving factor. (b) Average packet transmission delay.
Conclusion

- This paper provide an easy way to reach the accurate analytical model for the performance evaluation of the DRX operation in 3GPP LTE Advanced wireless networks.

- They develop a new approach by dividing the DRX operation into several independent parts and then combine the result obtained in each part.

- They obtain accurate power-saving factor and packet transmission delay without sophisticated mathematical techniques.