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Abstract—This study presents the development of an integrated environmental monitoring and prediction system based 

on LoRa-IoT technology and deep learning, aimed at real-time assessment of air and water quality around Mind Lake at 

National Taipei University. Utilizing multiple Arduino-based sensor nodes, key environmental parameters—including 

PM2.5, pH, dissolved oxygen, conductivity, and water temperature—were continuously collected and transmitted over long 

distances via a LoRaWAN network. A backend system built with ExpressJS handles data processing and storage, while 

several deep learning models, including Gated Recurrent Unit (GRU), CNN-GRU, Long Short-Term Memory (LSTM), 

CNN-LSTM,Transformer, and Ensemble(Stacking) are employed for time-series predictions to forecast environmental 

changes. The resulting data are visualized in real time on a bilingual (Chinese-English) web interface, offering transparent 

access to environmental conditions for both the campus community and relevant stakeholders. By combining IoT-based 

sensing with deep learning prediction, this system not only enhances environmental awareness but also provides a scalable 

and cost-effective solution for supporting data-driven environmental management and decision-making in academic settings.  
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I. INTRODUCTION 

Environmental sustainability is a pressing global issue, 
especially in urban and institutional settings where human 
activity closely interacts with ecosystems. University 
campuses, as noted by [1], are vital not only for reducing 
environmental impact but also for offering experiential 
learning opportunities. The National Taipei University 
(NTPU) campus, centered around the biodiverse Mind Lake, 
exemplifies such a setting. While considered one of Taiwan’s 
“healthy campuses,” anecdotal reports and rising biodiversity 
(ducks, turtles, fish) signal both ecological potential and risk. 
Seasonal flooding and unregulated human-animal interactions 
(e.g., feeding) pose ongoing threats. 

Although NTPU employs automated water-level 
monitoring, it lacks real-time data on air and water quality, 
predictive analytics, and public access. To address this, we 
present a smart monitoring and forecasting system leveraging 
IoT infrastructure and deep learning. Using LoRaWAN [2], 
we enable low-power, campus-wide data collection. 
Forecasting models include GRU and LSTM networks, 
chosen for their ability to model temporal dependencies in 
time-series data, along with hybrid CNN-GRU and CNN-
LSTM architectures. Transformer-based models further 
enhance long-range prediction through attention mechanisms. 
An ensemble approach balances accuracy and robustness, 
aligning with [3], which showed deep learning ensembles 
outperform traditional methods in environmental forecasting. 

Our bilingual (Chinese-English) interface ensures 
accessibility, while the system enables proactive, data-driven 
responses. This research offers a scalable framework for 
sustainable campus practices and supports smarter 
environmental governance, echoing recommendations by [4]. 

II. RELATED WORK 

Sustainable development within institutional 
environments is increasingly recognized as a key strategy for 
addressing global environmental challenges. University 
campuses, in particular, serve not only as operational units 
that can reduce their ecological footprint but also as living 
laboratories where students engage in hands-on learning. As 
emphasized by Alshuwaikhat and Abubakar [1], sustainable 
campus initiatives are essential for both environmental impact 
mitigation and the cultivation of environmental responsibility 
through experiential education. 

To support such efforts, emerging technologies such as 
LoRaWAN have become central to modern environmental 
monitoring frameworks. Known for its long-range 
communication capability and low power consumption, 
LoRaWAN is especially suitable for outdoor and wide-area 
deployments, making it ideal for campus and remote 
environmental sensing. Its applications have been widely 
documented in smart city infrastructure, precision agriculture, 
and distributed sensor networks [2], [5], [9]. 

At the hardware level, cost-effective, Arduino-based 
sensor platforms have made real-time environmental 
monitoring more accessible and scalable. Recent 
developments include the use of compact and reliable sensor 
modules capable of measuring water quality parameters such 
as pH, dissolved oxygen, and total dissolved solids, as well as 
air pollutants like PM2.5. These sensor systems are 
lightweight, energy-efficient, and easy to deploy in both fixed 
and floating configurations, enabling detailed environmental 
assessments across complex ecosystems [6], [7], [8], [10]. 



In the domain of data analytics, deep learning has emerged 
as a superior alternative to traditional statistical methods for 
environmental prediction. Liu et al. [3] demonstrated that 
recurrent neural networks such as GRU and LSTM 
significantly outperform conventional models in predicting air 
quality metrics like PM2.5. These models are especially well-
suited for time-series forecasting due to their ability to learn 
temporal dependencies and adapt to nonlinear patterns in 
environmental data. Furthermore, GRU and LSTM have been 
effectively utilized in predicting water temperature and other 
hydrological parameters with minimal preprocessing 
requirements, making them practical for real-time systems 
[11]. 

To enhance model performance further, hybrid 
architectures such as CNN-GRU and CNN-LSTM combine 
the spatial pattern recognition strengths of convolutional 
layers with the sequential learning capabilities of recurrent 
units. These hybrid models have shown improvements in both 
accuracy and generalization, particularly for multivariate 
environmental forecasting tasks. More recently, Transformer-
based models have gained attention for their ability to model 
long-range dependencies using attention mechanisms. These 
models have demonstrated state-of-the-art results in complex 
time-series applications, including air quality and weather 
prediction scenarios [12]. 

Collectively, these technological advancements support 
the broader goals of the United Nations’ 2030 Agenda for 
Sustainable Development [4], particularly in areas related to 
climate action, sustainable cities, and environmental data 
accessibility. The integration of IoT-based monitoring 
systems with advanced AI forecasting tools represents a 
scalable and forward-looking solution to promote 
environmental resilience, not only within campuses but across 
broader urban and ecological contexts. 

III. METHODOLOGY 

A. System Overview 

The system is designed to provide real-time data collection, 
predictive analytics, and visualization to support the 
sustainability of the Mind Lake ecosystem at National Taipei 
University (NTPU). It employs IoT sensor nodes strategically 
placed around the lake to monitor key environmental 
parameters, including water temperature, pH, dissolved 
oxygen, and air quality. These sensors transmit data via a 
LoRaWAN network to a central gateway, which forwards the 
information to a cloud server for processing. The server hosts 
deep learning models that analyze trends and deliver real-time 
forecasts. Outputs are displayed through a bilingual (Chinese-
English) web dashboard, making environmental insights 
accessible to students, researchers, and decision-makers. 
Designed with scalability and adaptability in mind, the system 
serves as both a monitoring and early-warning platform for 
flooding and pollution, and can be replicated in other campus 
or community environments. 

B. Sensor Hardware and Node Deployment 

The environmental monitoring system employs a variety 
of sensors, each carefully selected for its ability to measure 
crucial parameters that influence the ecosystem around Mind 
Lake. The sensors were integrated into Arduino Mega 2560 
boards, which serve as the data acquisition units for the system. 
These sensors include: 

• DS18B20 Water Temperature Sensor: A digital sensor 
used to measure water temperature at various points in 

the lake, crucial for understanding the thermal 
dynamics of the water body. 

• Gravity Analog pH Sensor/Meter Kit V2: This sensor 
measures the pH levels of the lake’s water, a key 
indicator of water quality and aquatic life health. 

• Gravity Analog Dissolved Oxygen Sensor: This sensor 
tracks dissolved oxygen levels, which are essential for 
maintaining a healthy aquatic ecosystem. 

• Grove TDS Sensor: This sensor measures the total 
dissolved solids (TDS) in the water, which serves as a 
proxy for water purity and pollution levels. 

• SHARP GP2Y1023AU0F PM2.5 Sensor: This optical 
sensor is used to measure particulate matter (PM2.5) 
in the air, an important air quality parameter. 

 

Fig. 1. Complete System Flowchart 

 
Two sensor stations were deployed around Mind Lake: 

• Floating Station: A custom-built floating platform 
made of large styrofoam supports the water quality 
sensors. This platform allows the sensors to move with 
the water, ensuring they provide accurate real-time 
data. 

• PM2.5 Sensor Station: The PM2.5 sensor is mounted 
atop an electric box located near the lakeside. This 
station is dedicated to monitoring air quality near the 
lake and its surrounding area. 



 

Fig. 2. Floating Station 

 

Fig. 3. PM2.5 Sensor Station 

These stations are strategically placed to ensure 
comprehensive coverage of both the lake’s water and the 
surrounding air. The floating station is mobile and can adapt 
to changes in water level, while the PM2.5 sensor station 
provides continuous air quality data. 

C. LoRaWAN Communication and Gateway Setup 

The data from each sensor node is transmitted wirelessly 
using LoRaWAN (Long Range Wide Area Network), which 
is particularly well-suited for long-range communication in 
outdoor environments. The sensor nodes, each equipped with 
Heltec LoRa Wi-Fi ESP32 V3 kit, transmit data packets every 
10 minutes. This protocol allows for low-power, long-
distance communication, enabling the sensor nodes to operate 
independently for extended periods. 

The data transmitted by the nodes is received by a Heltec 
HT-M7603 LoRaWAN Gateway, which acts as the 
intermediary between the sensor nodes and the cloud server. 
The gateway has a range of approximately 100 meters and is 
connected to The Things Network (TTN), a widely-used 
network that facilitates LoRaWAN communication. The data 
packets are then forwarded to a cloud-based server, where 
they are stored, processed, and analyzed. 

This setup enables real-time environmental monitoring 
without requiring a wired infrastructure, making it an efficient 
and cost-effective solution for remote or large-scale 
deployment. 

 

Fig. 4. LoRaWAN Topology 

D. Backend System and Data Storage 

The data from each sensor node is transmitted wirelessly 
using LoRaWAN (Long Range Wide Area Network), which 
is particularly well-suited for long-range communication in 
outdoor environments. The sensor nodes, each equipped with 

Heltec LoRa Wi-Fi ESP32 V3 kit, transmit data packets every 
10 minutes. This protocol allows for low-power, long-
distance communication, enabling the sensor nodes to operate 
independently for extended periods. 

The data transmitted by the nodes is received by a Heltec 
HT-M7603 LoRaWAN Gateway, which acts as the 
intermediary between the sensor nodes and the cloud server. 
The gateway has a range of approximately 100 meters and is 
connected to The Things Network (TTN), a widely-used 
network that facilitates LoRaWAN communication. The data 
packets are then forwarded to a cloud-based server, where 
they are stored, processed, and analyzed. 

This setup enables real-time environmental monitoring 
without requiring a wired infrastructure, making it an efficient 
and cost-effective solution for remote or large-scale 
deployment. 

E. Data Preprocessing and Input Formatting 

Before training deep learning models, the collected data 
undergoes several preprocessing steps. First, the raw sensor 
readings are cleaned to handle missing values through 
interpolation. The data is then normalized using MinMax 
scaling to bring all features within the same range, which 
helps improve the stability and performance of the deep 
learning models. 

Each data sample represents a window of 48 consecutive 
data points (10-minute intervals), corresponding to a period of 
approximately 8 hours. The data is structured into sequences, 
with each sequence containing readings from all sensors. The 
sequences are used as inputs for the models, enabling the 
prediction of environmental conditions for the next 8 hours. 

The dataset is split into 80% training and 20% testing sets. 
To further train the ensemble model, the training set is divided 
into 75% for base models and 25% for the ensemble model. 

F. Model Architectures and Training 

Five deep learning models are used to predict 8-hour 
environmental trends: 

• GRU: Efficient for short-term patterns; two GRU 
layers followed by dense layers. 

• LSTM: Captures long-term dependencies using 
stacked layers with sequence output. 

• CNN+LSTM: Combines local feature extraction 
(CNN) with temporal learning (LSTM). 

• CNN+GRU: Similar to CNN+LSTM but more 
lightweight due to GRU cells. 

• Transformer: Utilizes attention mechanisms for long-
range dependency modeling. 

 

Fig. 5. GRU Architecture 

 
Fig. 6. LSTM Architecture 



 
Fig. 7. CNN+LSTM Architecture 

 
Fig. 8. CNN+GRU Architecture 

 
Fig. 9. Transformer Architecture 

G. Ensemble Prediction Strategy 

An ensemble learning approach was adopted to combine 
the outputs of the individual models and improve prediction 
accuracy. After training the base models, the ensemble model 
takes the predictions from each base model as input and 
generates a final forecast by combining the predictions in a 
weighted manner. This method helps to mitigate the 
individual weaknesses of the models and increase the 
robustness of the predictions. 

 

Fig. 10. Ensemble Architecture 

IV. RESULTS 

A. Overview of Results 

1) Data Source 
Environmental data were collected from three IoT sensor 

nodes deployed around Mind Lake at National Taipei 
University between November 2024 and May 2025. Two 
nodes were installed on floating platforms within the lake, 
while one was mounted on an elevated electric box near the 
shoreline. Each device recorded measurements at 10-minute 
intervals. 

The system monitored key environmental parameters, 
including water temperature, pH, electrical conductivity, 
dissolved oxygen, total dissolved solids (ppm), and PM2.5. 
Sensor readings were transmitted in real time via LoRaWAN, 
using the TTN (The Things Network) Console and MQTT 
protocol to forward data to a private MongoDB database 
hosted on the research lab’s cloud server. 

To address occasional packet loss during transmission, 
missing values were imputed using K-Nearest Neighbors 

(KNN) interpolation. The cleaned dataset was then 
normalized and used for time-series forecasting with various 
deep learning models. 

2) Evaluation Metrics 
Model performance was evaluated using RMSE, MAE, 

and R²—metrics that assess prediction error magnitude, 
average deviation, and variance explained, respectively. The 
ensemble model, which combines outputs from all individual 
models, demonstrated superior forecasting accuracy overall, 
as detailed in the following analysis. 

B. Model Performance Comparison 

Tables below summarizes the evaluation metrics (R2, 
MAE, and RMSE) for each of the individual models and the 
ensemble model, across the five environmental parameters 
measured. Each of these metrics provides insight into the 
models' ability to predict the environmental conditions 
accurately. 

TABLE I. ONE-HOUR PREDICTION R2
 RESULT 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.9738 0.917 0.9397 0.899 0.9514

LSTM 0.9673 0.916 0.9387 0.889 0.942

CNN + GRU 0.9657 0.927 0.9453 0.904 0.9406

CNN + LSTM 0.9334 0.905 0.9079 0.903 0.9299

Transformer 0.9286 0.921 0.9334 0.874 0.9423

Ensemble 0.9797 0.942 0.9532 0.916 0.9515

R²

 

TABLE II. ONE-HOUR PREDICTION MAE RESULTS 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.0108 0.076 0.0383 1.156 1.3813

LSTM 0.0123 0.078 0.0384 1.253 1.5111

CNN + GRU 0.0124 0.072 0.0377 1.243 1.7

CNN + LSTM 0.0173 0.08 0.0579 1.253 1.81

Transformer 0.0193 0.072 0.0467 1.661 1.76

Ensemble 0.0091 0.077 0.0341 1.179 1.37

MAE

 

TABLE III. ONE-HOUR PREDICTION RMSE RESULTS 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.0196 0.101 0.0791 3.151 0.0103

LSTM 0.0214 0.105 0.078 3.124 0.0106

CNN + GRU 0.0228 0.099 0.0699 2.96 0.0113

CNN + LSTM 0.0265 0.112 0.0881 2.95 0.0111

Transformer 0.0265 0.091 0.0837 3.23 0.0105

Ensemble 0.0195 0.093 0.0656 2.843 0.0104

RMSE

 

TABLE IV. FOUR-HOUR PREDICTION R2
 RESULT 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.9572 0.913 0.9075 0.798 0.9217

LSTM 0.9472 0.91 0.9094 0.804 0.9121

CNN + GRU 0.9347 0.914 0.9296 0.832 0.9145

CNN + LSTM 0.9097 0.892 0.883 0.837 0.9082

Transformer 0.9097 0.931 0.8942 0.796 0.9206

Ensemble 0.9554 0.948 0.9363 0.844 0.9244

R²

 



TABLE V. FOUR-HOUR PREDICTION MAE RESULTS 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.0139 0.08 0.0482 1.761 1.8329

LSTM 0.0154 0.082 0.0494 1.768 1.9837

CNN + GRU 0.0172 0.08 0.0437 1.659 2.01

CNN + LSTM 0.02 0.087 0.0648 1.659 2.12

Transformer 0.025 0.071 0.0524 1.807 1.93

Ensemble 0.0142 0.074 0.0408 1.603 1.87

MAE

 

TABLE VI. FOUR-HOUR PREDICTION RMSE RESULTS 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.0175 0.099 0.0768 3.202 2.8401

LSTM 0.0194 0.101 0.076 3.152 3.0105

CNN + GRU 0.0216 0.099 0.067 2.915 2.97

CNN + LSTM 0.0254 0.111 0.0864 2.82 3.08

Transformer 0.0254 0.088 0.0821 3.156 2.86

Ensemble 0.0178 0.091 0.0637 2.807 2.79

RMSE

 

TABLE VII. EIGHT-HOUR PREDICTION R2
 RESULT 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.9153 0.894 0.8686 0.726 0.8718

LSTM 0.8986 0.878 0.8735 0.729 0.8646

CNN + GRU 0.8652 0.891 0.8951 0.75 0.8728

CNN + LSTM 0.8843 0.87 0.8735 0.732 0.8697

Transformer 0.8843 0.927 0.8549 0.706 0.8771

Ensemble 0.9046 0.946 0.9091 0.763 0.8795

R²

 

TABLE VIII. EIGHT-HOUR PREDICTION MAE RESULTS 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.0203 0.088 0.0604 2.208 2.2243

LSTM 0.022 0.095 0.0604 2.198 2.3629

CNN + GRU 0.0255 0.09 0.0533 2.084 2.24

CNN + LSTM 0.0227 0.097 0.0723 2.198 2.38

Transformer 0.0306 0.073 0.0633 2.269 2.22

Ensemble 0.021 0.075 0.0502 2.045 2.1

MAE

 

TABLE IX. EIGHT-HOUR PREDICTION RMSE RESULTS 

Model
Water 

Temperature
pH Oxygen PM2.5 TDS/EC

GRU 0.0246 0.111 0.0914 3.658 3.603

LSTM 0.027 0.1194 0.0897 3.635 3.7032

CNN + GRU 0.0311 0.1128 0.0817 3.492 3.59

CNN + LSTM 0.0288 0.123 0.0955 3.55 3.63

Transformer 0.0288 0.092 0.0955 3.722 3.53

Ensemble 0.0261 0.0937 0.0761 3.4 3.49

RMSE

 

C. Performance Analysis of Individual Models 

The evaluation of all models using R², MAE, and RMSE 
across 1-hour, 4-hour, and 8-hour predictions reveals distinct 
strengths and limitations for each approach. Among the 
individual models, GRU consistently performed well in 
predicting water temperature and total dissolved solids (TDS), 
showing strong accuracy and low error across all time 
horizons. Its ability to capture stable and consistent patterns 

made it particularly effective for these parameters. However, 
GRU was less accurate when handling more dynamic 
variables like PM2.5 and pH. 

LSTM demonstrated solid overall performance, especially 
in predicting dissolved oxygen and pH levels. Its strength in 
modeling long-term dependencies contributed to its 
effectiveness in these areas. That said, it lagged behind GRU 
in forecasting TDS and showed slightly weaker accuracy for 
PM2.5. 

The CNN+GRU hybrid model excelled in PM2.5 
forecasting, benefiting from the CNN's local feature 
extraction combined with GRU's sequence modeling. Despite 
this strength, its performance in water temperature and pH 
prediction was less impressive, with other models such as 
GRU and Transformer performing better in those categories. 

Similarly, CNN+LSTM provided reasonable results 
across all metrics, especially for pH and PM2.5. However, it 
did not lead in any specific parameter and generally showed 
balanced, yet unremarkable performance compared to more 
specialized models. 

The Transformer model stood out in pH prediction, 
achieving the highest accuracy in this category, thanks to its 
attention mechanism and ability to handle long-range 
dependencies. However, its effectiveness dropped when 
forecasting PM2.5 and TDS, where models like CNN+GRU 
and GRU delivered better results. 

Among all, the ensemble model consistently delivered the 
most stable and accurate results. By combining the strengths 
of each individual architecture, it achieved the best 
performance in oxygen, PM2.5, and TDS predictions, and 
maintained top results across nearly all other parameters. This 
highlights the robustness and generalizability of ensemble 
learning for environmental forecasting applications. 

V. ANALYSIS 

 

Fig. 11. Water Temperature BoxPlot Chart 

 

Fig. 12. Acidity(pH) BoxPlot Chart 

 

Fig. 13. Conductivity (EC) BoxPlot Chart 

 



 

Fig. 14. Dissolved Oxygen BoxPlot Chart 

 

Fig. 15. Dissolved Solid(ppm) BoxPlot Chart 

 

Fig. 16. PM2.5 BoxPlot Chart 

Monthly box plots, supported by field observations, reveal 
key seasonal and ecological patterns around Mind Lake. 
Water temperature follows expected seasonal trends, with 
cooler medians from November to January and warmer values 
from March to May, reflecting a natural thermal cycle that 
impacts oxygen levels and aquatic activity. 

pH levels remain within a stable alkaline range (7–9), with 
minor monthly variation. Notably, once a shift occurs, the pH 
tends to stabilize in that range for 1–2 months, suggesting a 
buffered system or prolonged external influence such as 
runoff or biological processes. 

Dissolved oxygen (DO) mostly ranges from 6–12 mg/L, 
with greater variability observed between November and 
January. From February onward, levels stabilize, indicating 
balanced aerobic conditions. While conductivity remains low, 
its consistency should be considered alongside the rising TDS 
trend. 

TDS displays a clear upward trend from late 2024 to 2025, 
aligning with visual signs of algae growth and greenish 
water—likely indicating increasing organic matter and early-
stage eutrophication. 

PM2.5 shows the greatest variability, especially from 
February 2025 onward, with values spiking above 40 µg/m³. 
Field data suggests a sharp drop in PM2.5 after rainfall, 
especially when levels exceed 25 µg/m³, reflecting a strong 
negative correlation between rainfall and air pollution. This 
effect is most pronounced from March to May. 

VI. DISCUSSION 

A. Real-Time Prediction Capabilitites 

One of the key features of the system is its ability to 
provide real-time predictions, with each prediction step taking 
only 10ms to compute. This quick response time is crucial for 
applications like flood forecasting and air quality monitoring, 
where timely decisions can prevent potential disasters. The 
system’s ability to predict parameters such as water 
temperature and PM2.5 almost instantaneously makes it 
suitable for deployment in environments where real-time 
intervention is required. 

While the ensemble model provided the most stable and 
accurate predictions, it is important to note that individual 

models also offer valuable insights for specific parameters. 
For example, GRU performed best for water temperature and 
TDS, while Transformer excelled in pH predictions. This 
highlights the importance of selecting the right model based 
on the parameter being predicted. 

B. Model Comparisons and Improvements 

The comparison between individual models and the 
ensemble model highlights that combining models can lead to 
a more robust system, especially when different models 
capture different aspects of the data. The moderate 
improvements in performance metrics for the ensemble model 
suggest that there is still room for refinement. For instance: 

• Fine-tuning individual models: Models like 
CNN+LSTM and Transformer showed promise for 
specific parameters (PM2.5 and pH), and further fine-
tuning these models could enhance their overall 
performance. 

• Ensemble weighting: The ensemble model could be 
further optimized by adjusting the weights of the 
individual models based on their performance for 
specific parameters. For example, GRU might be given 
more weight for predicting water temperature and TDS, 
while Transformer could be emphasized for pH 
prediction. 

C. Limitations and Challenges 

While the system shows strong overall performance, 
several limitations and challenges must be addressed: 

• Sensor Accuracy: The accuracy of predictions depends 
heavily on the quality of the sensor data. Any 
inconsistencies or errors in the sensor measurements, 
such as noise or calibration issues, can affect model 
predictions. Future work could explore sensor 
calibration techniques or the use of additional sensor 
types to improve data reliability. 

• Generalization: While the system performed well on 
the NTPU Mind Lake dataset, further testing on other 
environments (e.g., different campuses or urban areas) 
is necessary to validate the generalizability of the 
models. Environmental conditions can vary widely 
across locations, which may affect model accuracy. 

• Data Availability: The success of the system relies on 
continuous data collection over long periods. For real-
time prediction, a steady stream of accurate data is 
essential. Data gaps or interruptions in sensor readings 
could undermine prediction accuracy, especially in 
real-time scenarios. 

• Computational Efficiency: The ensemble model 
provided better results but requires more 
computational resources due to the need to run 
multiple models in parallel. Future improvements 
could focus on model pruning or exploring more 
efficient ensemble techniques to reduce computational 
costs. 

D. Future Work and Directions 

Several avenues for future work can improve the system: 
Model Enhancement: As noted, fine-tuning the individual 

models, especially for PM2.5 and pH, could lead to better 
performance. Incorporating hybrid models or exploring other 



deep learning techniques, such as attention mechanisms for 
PM2.5 prediction, could further improve results. 

Integration with Other Environmental Data: Future 
iterations of the system could integrate additional 
environmental variables, such as weather data (temperature, 
humidity) or real-time weather forecasts, to provide more 
comprehensive and accurate predictions. This could further 
improve the robustness of the system in forecasting complex 
environmental phenomena. 

Scalability: Expanding the system to cover larger areas 
and more stations could provide valuable insights for broader 
applications, such as urban monitoring and sustainable city 
planning. The system’s modular design makes it easy to scale 
and deploy in other locations with minimal additional setup. 

User Feedback: Incorporating real-time user feedback 
from environmental managers and other stakeholders could 
help refine the system. Feedback on prediction accuracy and 
actionable insights would be invaluable for adapting the 
system to real-world needs. 

Conclusion 
The proposed environmental monitoring system 

successfully demonstrates the application of deep learning 
models and IoT technology to provide real-time predictions of 
critical environmental parameters. While the ensemble model 
offers the best overall performance, each individual model 
shows specific strengths for different parameters. This makes 
the system adaptable to various environmental monitoring 
applications. Future improvements, including model fine-
tuning, data integration, and scalability, will enhance its 
effectiveness and enable broader deployment. 

VII. CONCLUSION 

The proposed environmental monitoring system 
successfully demonstrates the application of deep learning 
models and IoT technology to provide real-time predictions of 
critical environmental parameters. While the ensemble model 
offers the best overall performance, each individual model 
shows specific strengths for different parameters. This makes 
the system adaptable to various environmental monitoring 
applications. Future improvements, including model fine-
tuning, data integration, and scalability, will enhance its 
effectiveness and enable broader deployment. 
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