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Abstract—3D reconstruction is a fundamental task in 

computer graphics, with broad applications in virtual reality, 

gaming, and cultural heritage preservation. However, 

traditional methods such as LiDAR scanning are often hindered 

by high costs and limited operational range, restricting their 

accessibility and scalability. To overcome these challenges, we 

present a novel, effective approach that leverages RGB video 

input for accurate 3D reconstruction. Our method integrates 3D 

Gaussian representations with Simultaneous Localization and 

Mapping (SLAM) techniques to generate high-fidelity models 

from conventional video. This framework offers a practical and 

accessible solution for high-quality 3D reconstruction. 

I. INTRODUCTION  

Traditional dense Simultaneous Localization and Mapping 
(SLAM) approaches often rely on explicit handcrafted 
representations such as points, surfels, or signed distance 
fields. While these methods have reached production-level 
maturity, they struggle with capturing unobserved viewpoints 
and require high-frame-rate, geometrically rich input. More 
recently, neural implicit volumetric representations—such as 
those based on radiance fields—have emerged, offering 
impressive visual fidelity through differentiable rendering. 
However, they are typically computationally intensive, hard 
to edit, and lack explicit geometry modeling.  

Visual Simultaneous Localization and Mapping (SLAM) 
is a critical capability for autonomous systems, enabling real-
time pose estimation and 3D environment mapping. A key 
factor influencing SLAM performance is the choice of map 
representation, which significantly affects system efficiency, 
accuracy, and downstream applications. 

To address these challenges, SplaTAM [1] propose a 
SLAM framework built on explicit volumetric 3D Gaussians, 
which it use to Splat, Track, and Map. This representation 
combines the advantages of fast rasterization-based rendering 
(up to 400 FPS), spatially explicit mapping, and efficient 
photometric optimization.  

Despite its strengths, SplaTAM relies on depth input, 
which in its original implementation is obtained using a 
LiDAR sensor. However, in our experiments, we observed 
that the LiDAR used by SplaTAM can only capture reliable 
depth information within a short range of approximately 1 to 

1.5 meters. This limitation makes SplaTAM unsuitable for 
reconstructing larger-scale scenes. To address this, we replace 
the LiDAR depth with predicted depth maps derived from 
RGB inputs. Most importantly, we propose a novel method to 
ensure that the use of predicted depth does not compromise 
reconstruction accuracy, enabling our system to maintain 
high-fidelity scene representations. 

II. REALTED WORK 

A. Traditional dense SLAM methods 

Traditional dense SLAM methods have investigated a 
range of explicit representations for modeling 3D scenes. 
These include 2.5D images that capture partial 3D geometry 
through depth or height maps [9], Gaussian mixture models 
[11], (truncated) signed distance functions (SDFs) [10], and 
circular surfels [12]. Circular surfels—colored, disk-shaped 
surface elements—have proven particularly effective for real-
time optimization from RGB-D inputs. While surfel-based 
approaches support efficient scene reconstruction, they are 
inherently discontinuous and thus require careful 
regularization to mitigate artifacts such as holes in the 
reconstructed geometry [12]. 

Recent advances in differentiable rendering, such as 
differentiable rasterizers [13], facilitate gradient flow through 
depth discontinuities and improve optimization. However, 
traditional SLAM systems often rely on non-differentiable 
visibility functions, limiting their compatibility with gradient-
based optimization techniques. In contrast, our work adopts a 
volumetric scene representation based on 3D Gaussians, 
rather than surface-based primitives, to enable smooth, 
continuous optimization for efficient and accurate SLAM. 

B. Pretrained neural network representations 

Recent advancements have integrated pretrained neural 
network representations with traditional SLAM techniques, 
primarily focusing on predicting depth from RGB images to 
enhance mapping and localization. Early approaches directly 
incorporate neural network-predicted depth maps into SLAM 
pipelines [14], providing a straightforward way to leverage 
learned depth information. More sophisticated methods 
employ variational autoencoders (VAEs) to decode compact, 
optimizable latent codes into depth maps [15], enabling 
efficient representation and optimization. Other techniques 



simultaneously learn to predict depth cost volumes and 
perform tracking [16], combining depth estimation with 
camera motion estimation in a unified framework.  

C. 3D Gaussian Splatting 

Recently, 3D Gaussians have emerged as a powerful 

representation for 3D scene modeling, enabling high-

speed, differentiable rendering through splatting 

techniques [17]. This representation has been extended to 

dynamic scene modeling by incorporating dense six-

degree-of-freedom(6-DOF) motion, facilitating 

applications across both static and dynamic environments 

[18]. Despite their effectiveness, these methods typically 

assume access to accurate 6-DOF camera poses for each 

input frame in order to optimize the scene representation 

[18]. Such reliance on precomputed poses limits their 

applicability in real-world SLAM scenarios, where 

camera poses may be unknown or corrupted by noise. In 

this work, we address this limitation by jointly estimating 

camera poses and fitting the underlying Gaussian 

representation, thereby eliminating the need for externally 

provided pose information. 

III. METHOD 

Our method (shown in Fig. 1) is broadly inspired by 
SplaTAM, but differs in a key aspect: unlike SplaTAM, which 
relies on RGB-D input, our approach reconstructs 3D scenes 
using RGB images alone. This requires addressing the 
absence of explicit depth information. To this end, we first 
predict per-frame depth maps from RGB inputs using a 
monocular depth estimator. These predicted depths are then 
refined and aligned with the corresponding RGB images and 
camera poses through our proposed Depth-Color-Pose 
Optimization (DCPO) module. This alignment step ensures 
geometric consistency and improves reconstruction accuracy 
during the SLAM process. 

 

A. Depth Estimation 

Traditional SLAM acquiring depth using LiDAR are 
expensive or limited by their effective range. In our 
experiments with the iPhone’s LiDAR sensor, we observed 
that it could only reliably capture depth within approximately 
1 to 1.5 meters (shown in Fig. 2 and Fig. 3). 

Therefore, we adopted a state-of-the-art (SOTA) 
monocular depth prediction model. This model generates a 
dense depth map for each RGB image, along with a per-pixel 
uncertainty map that quantifies confidence in each prediction. 
By filtering out high-uncertainty pixels, we improve the 
reliability of the depth map, which in turn enhances the 
performance of subsequent processing stages such as pose 
estimation and scene reconstruction. 

B. Uncertainty-Aware DCPO module 

 All three components are optimized within our 

Uncertainty-Aware Depth-Color-Pose Optimization (DCPO) 

module using an iterative optimization strategy. Instead of 

jointly optimizing all parameters at once, which often leads 

to ambiguity and numerical instability, we alternate between 

optimizing each component while keeping the others fixed. 

Fig.1. System Architecture Diagram 

Fig.2. From left to right:  

Real-world scene / LiDAR depth map / Predicted depth map. 

Fig.3. From left to right:  

Real-world scene / LiDAR depth map (empty) / Predicted 

depth map. 

  

 

 



By optimizing Depth, RGB, and Pose in a cyclical and 

decoupled manner, we effectively disentangle these variables, 

avoid local minima, and achieve more accurate and stable 

convergence. This not only improves the quality of the final 

reconstruction, but also leads to faster and more reliable 

optimization in practice. 

 
1) Uncertainty-Aware Pose Optimization(Tracking). 

 Thanks to 3D Gaussian Splatting,  the photometric 
loss is differentiable with respect to the camera pose. We 
aim to refine the camera pose by minimize the image and 
depth reconstruction error of the RGB and Depth frame 
with respect to camera pose parameters for t + 1, but only 
evaluate errors over pixels within the visible mask. 
However, since the predicted depth often contains noise 
that is unreliable, we incorporate the depth uncertainty 
map to guide camera pose tracking.  Specifically, we 
down-weight with high uncertainty during the loss 
calculation. This ensures that the pose refinement process 
is not biased by unreliable depth values, improving 
robustness in challenging regions.  

2) Uncertainty-Aware Depth Optimization. 

 As the depth is predicted, aligning it with the scene is 
crucial to preserve structural accuracy in the 
reconstruction. We optimize a global scale and translation 
offset for each depth map, aligning it with the 3D scene 
reconstructed so far (shown in Fig. 4). We also incorporate 
the depth uncertainty map to down-weight unreliable 
pixels during this optimization. This ensures that the 
refinement process focuses on trustworthy regions of the 
depth map. Together, these steps allow us to produce 
consistent global depth estimates and better tracking 
accuracy. In addition to refining the camera pose, we also 
optimize the predicted depth map using a scale and 
translation transformation. This is crucial because 
monocular depth estimation is an ill-posed problem—it 
lacks absolute scale information. As a result, predicted 
depth maps often have correct relative structure but 
inconsistent geometry across frames and hinder reliable 
tracking and reconstruction. 

3) RGB Optimization 

 Finally, we also apply a linear color transformation 
to the RGB frames to account for variations in exposure 
and white balance. Even within the same scene, 

differences in lighting conditions—such as camera auto-
exposure adjustments or slight changes in viewpoint—can 
lead to noticeable color shifts between frames. These 
inconsistencies can degrade the accuracy of photometric 
tracking and cause discontinuous or distorted 
reconstructions. By learning a simple linear 
transformation (scale and bias) per frame, we align the 
appearance of incoming images with the existing 3D scene 
(shown in Fig. 5), improving both pose estimation stability 
and the visual coherence of the final reconstruction.  

C. 3D Gaussian Densification 

Gaussian Densification (shown in Fig. 6) aims to inject 

new 3D Gaussians into the scene map as each new frame is 

processed. After pose tracking, we obtain an accurate camera 

pose for the current frame, and the corrected depth map 

provides reliable 3D geometry. This allows us to estimate 

where new Gaussians should be placed in the world. 

However, we want to avoid redundant or unnecessary 

densification. If the existing Gaussians already represent the 

scene geometry well, adding more would be inefficient and 

potentially harmful. To address this, we compute a 

densification mask—a per-pixel decision map that indicates 

where new Gaussians are needed. 

 

This mask highlights two main cases: 

1) Underdense areas where the map does not yet have 

sufficient coverage. 

2) New geometry in front of existing geometry. 

Fig.6. 3D Gaussian Densification 

Fig.5. RGB Optimization 

Fig.4. Uncertainty-Aware Depth Optimization 

 

 

 



D. Uncertainty-Aware Gaussian Mapping 

This step refines and consolidates the 3D Gaussian Map 

after tracking. While tracking provides a rough alignment of 

new observations, it is often noisy and incomplete—

especially due to uncertainty in monocular depth predictions. 

Therefore, we perform a dedicated mapping phase to 

optimize the position, appearance, and opacity of Gaussians, 

while keeping camera poses fixed. To address depth 

unreliability, we use a per-pixel uncertainty map during 

optimization. Pixels with high uncertainty are down-

weighted in the loss, reducing the impact of noisy geometry. 

This results in a cleaner and more stable reconstruction. 

IV. RESULT 

In this section, we first present the reconstruction results 
of our system on both benchmark and real-world datasets. To 
further demonstrate the practical utility of our reconstructions, 
we render 360-degree panoramas with our scenes. Our method 
reconstructs scenes using only a short RGB video as input, 
enabling re-located rendering of panoramas from arbitrary 
positions within the scene. Compared to traditional method, 
which typically requires expensive hardware or time-
consuming image stitching method, this significantly reduces 
both time and labor while maintaining high visual fidelity. 

A. Our reconstruction results 

 

 

 

 

 

Fig.7. Two-Stage Cubemap-based LaMa Inpainting: Restore horizontal faces first for stability, then use overlap cues to 

complete top and bottom. By providing overlap information, we enable the top and bottom faces to gain more contextual 

insight for inpainting. This guides lower-confidence areas using higher-confidence regions. 

Fig.8. Reconstruction result on benchmark dataset 

(RGB/Depth) 

Fig.9. Reconstruction result on real-world dataset 

(RGB/Depth) 

 

Fig.10. Reconstruction result on real-world dataset 

(RGB/Depth) 

 

 

Fig.11. Reconstruction result on real-world dataset 

(RGB/Depth) 

 

 

 



B.  360° panoramas results 

Traditional 360° panoramas are generated via image 
stitching, which requires fixed camera positions and is prone 
to artifacts from camera motion. In contrast (shown in Fig. 12), 
our method enables flexible, efficient panorama rendering 
from arbitrary viewpoints using the reconstructed scene. 

During relocation, new viewpoints may reveal hidden 
areas, requiring inpainting to complete 360° panoramas. We 
propose a Two-Stage Cubemap-based LaMa Inpainting 
method (shown in Fig. 7) to fill missing regions and enhance 
panorama quality. Considering the limited effectiveness of 
current 360 °  panorama inpainting methods, our approach 

employs the stable 2D image restoration model, 
LaMa. Converting the Panorama to a Cubemap representation 
primarily preserves original perspective geometry, avoiding 
severe distortions in areas like the zenith and nadir, thus 
improving LaMa's structural understanding and inpainting 
accuracy.  

 

 We also use 360° panoramas as environmental light 

in Unity to demonstrate our inpainting result. 

 

 

Fig.12. Comparison of 360° panoramas: Comparison shows that the panorama rendered from our scene maintains 

more accurate geometric structure than the stitching result. 

Fig.13. Before inpainting 

Fig.14. After inpainting 

Fig.15. Inpainting result 

Fig.16. Inpainting result 

 

Fig.17. Lighting in Unity with our 360° panorama 
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Fig.18. Lighting in Unity with our 360° panorama 

 

Fig.19. Lighting in Unity with our 360° panorama 

 


